Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
class ConvGRU(nn.Module): | |
def __init__(self, h_planes=128, i_planes=128): | |
super(ConvGRU, self).__init__() | |
self.do_checkpoint = False | |
self.convz = nn.Conv2d(h_planes+i_planes, h_planes, 3, padding=1) | |
self.convr = nn.Conv2d(h_planes+i_planes, h_planes, 3, padding=1) | |
self.convq = nn.Conv2d(h_planes+i_planes, h_planes, 3, padding=1) | |
self.w = nn.Conv2d(h_planes, h_planes, 1, padding=0) | |
self.convz_glo = nn.Conv2d(h_planes, h_planes, 1, padding=0) | |
self.convr_glo = nn.Conv2d(h_planes, h_planes, 1, padding=0) | |
self.convq_glo = nn.Conv2d(h_planes, h_planes, 1, padding=0) | |
def forward(self, net, *inputs): | |
inp = torch.cat(inputs, dim=1) | |
net_inp = torch.cat([net, inp], dim=1) | |
b, c, h, w = net.shape | |
glo = torch.sigmoid(self.w(net)) * net | |
glo = glo.view(b, c, h*w).mean(-1).view(b, c, 1, 1) | |
z = torch.sigmoid(self.convz(net_inp) + self.convz_glo(glo)) | |
r = torch.sigmoid(self.convr(net_inp) + self.convr_glo(glo)) | |
q = torch.tanh(self.convq(torch.cat([r*net, inp], dim=1)) + self.convq_glo(glo)) | |
net = (1-z) * net + z * q | |
return net | |