Spaces:
Running
Running
import torch | |
import torch.nn.functional as F | |
from lietorch import SE3, Sim3 | |
MIN_DEPTH = 0.2 | |
def extract_intrinsics(intrinsics): | |
return intrinsics[...,None,None,:].unbind(dim=-1) | |
def coords_grid(ht, wd, **kwargs): | |
y, x = torch.meshgrid( | |
torch.arange(ht).to(**kwargs).float(), | |
torch.arange(wd).to(**kwargs).float(), indexing='ij') | |
return torch.stack([x, y], dim=-1) | |
def iproj(disps, intrinsics, jacobian=False): | |
""" pinhole camera inverse projection """ | |
ht, wd = disps.shape[2:] | |
fx, fy, cx, cy = extract_intrinsics(intrinsics) | |
y, x = torch.meshgrid( | |
torch.arange(ht).to(disps.device).float(), | |
torch.arange(wd).to(disps.device).float(), indexing='ij') | |
i = torch.ones_like(disps) | |
X = (x - cx) / fx | |
Y = (y - cy) / fy | |
pts = torch.stack([X, Y, i, disps], dim=-1) | |
if jacobian: | |
J = torch.zeros_like(pts) | |
J[...,-1] = 1.0 | |
return pts, J | |
return pts, None | |
def proj(Xs, intrinsics, jacobian=False, return_depth=False): | |
""" pinhole camera projection """ | |
fx, fy, cx, cy = extract_intrinsics(intrinsics) | |
X, Y, Z, D = Xs.unbind(dim=-1) | |
Z = torch.where(Z < 0.5*MIN_DEPTH, torch.ones_like(Z), Z) | |
d = 1.0 / Z | |
x = fx * (X * d) + cx | |
y = fy * (Y * d) + cy | |
if return_depth: | |
coords = torch.stack([x, y, D*d], dim=-1) | |
else: | |
coords = torch.stack([x, y], dim=-1) | |
if jacobian: | |
B, N, H, W = d.shape | |
o = torch.zeros_like(d) | |
proj_jac = torch.stack([ | |
fx*d, o, -fx*X*d*d, o, | |
o, fy*d, -fy*Y*d*d, o, | |
# o, o, -D*d*d, d, | |
], dim=-1).view(B, N, H, W, 2, 4) | |
return coords, proj_jac | |
return coords, None | |
def actp(Gij, X0, jacobian=False): | |
""" action on point cloud """ | |
X1 = Gij[:,:,None,None] * X0 | |
if jacobian: | |
X, Y, Z, d = X1.unbind(dim=-1) | |
o = torch.zeros_like(d) | |
B, N, H, W = d.shape | |
if isinstance(Gij, SE3): | |
Ja = torch.stack([ | |
d, o, o, o, Z, -Y, | |
o, d, o, -Z, o, X, | |
o, o, d, Y, -X, o, | |
o, o, o, o, o, o, | |
], dim=-1).view(B, N, H, W, 4, 6) | |
elif isinstance(Gij, Sim3): | |
Ja = torch.stack([ | |
d, o, o, o, Z, -Y, X, | |
o, d, o, -Z, o, X, Y, | |
o, o, d, Y, -X, o, Z, | |
o, o, o, o, o, o, o | |
], dim=-1).view(B, N, H, W, 4, 7) | |
return X1, Ja | |
return X1, None | |
def projective_transform(poses, depths, intrinsics, ii, jj, jacobian=False, return_depth=False): | |
""" map points from ii->jj """ | |
# inverse project (pinhole) | |
X0, Jz = iproj(depths[:,ii], intrinsics[:,ii], jacobian=jacobian) | |
# transform | |
Gij = poses[:,jj] * poses[:,ii].inv() | |
Gij.data[:,ii==jj] = torch.as_tensor([-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], device="cuda") | |
X1, Ja = actp(Gij, X0, jacobian=jacobian) | |
# project (pinhole) | |
x1, Jp = proj(X1, intrinsics[:,jj], jacobian=jacobian, return_depth=return_depth) | |
# exclude points too close to camera | |
valid = ((X1[...,2] > MIN_DEPTH) & (X0[...,2] > MIN_DEPTH)).float() | |
valid = valid.unsqueeze(-1) | |
if jacobian: | |
# Ji transforms according to dual adjoint | |
Jj = torch.matmul(Jp, Ja) | |
Ji = -Gij[:,:,None,None,None].adjT(Jj) | |
Jz = Gij[:,:,None,None] * Jz | |
Jz = torch.matmul(Jp, Jz.unsqueeze(-1)) | |
return x1, valid, (Ji, Jj, Jz) | |
return x1, valid | |
def induced_flow(poses, disps, intrinsics, ii, jj): | |
""" optical flow induced by camera motion """ | |
ht, wd = disps.shape[2:] | |
y, x = torch.meshgrid( | |
torch.arange(ht).to(disps.device).float(), | |
torch.arange(wd).to(disps.device).float(), indexing='ij') | |
coords0 = torch.stack([x, y], dim=-1) | |
coords1, valid = projective_transform(poses, disps, intrinsics, ii, jj, False) | |
return coords1[...,:2] - coords0, valid | |