File size: 6,704 Bytes
b7eedf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
import cv2
import lietorch
import droid_backends
import time
import argparse
import numpy as np

# import os
# os.environ['PYOPENGL_PLATFORM'] = 'egl'
#os.environ['PYOPENGL_PLATFORM'] = 'osmesa'
import open3d as o3d

# o3d.visualization.webrtc_server.enable_webrtc()

from lietorch import SE3
import geom.projective_ops as pops


CAM_POINTS = np.array([
        [ 0,   0,   0],
        [-1,  -1, 1.5],
        [ 1,  -1, 1.5],
        [ 1,   1, 1.5],
        [-1,   1, 1.5],
        [-0.5, 1, 1.5],
        [ 0.5, 1, 1.5],
        [ 0, 1.2, 1.5]])

CAM_LINES = np.array([
    [1,2], [2,3], [3,4], [4,1], [1,0], [0,2], [3,0], [0,4], [5,7], [7,6]])

def white_balance(img):
    # from https://stackoverflow.com/questions/46390779/automatic-white-balancing-with-grayworld-assumption
    result = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
    avg_a = np.average(result[:, :, 1])
    avg_b = np.average(result[:, :, 2])
    result[:, :, 1] = result[:, :, 1] - ((avg_a - 128) * (result[:, :, 0] / 255.0) * 1.1)
    result[:, :, 2] = result[:, :, 2] - ((avg_b - 128) * (result[:, :, 0] / 255.0) * 1.1)
    result = cv2.cvtColor(result, cv2.COLOR_LAB2BGR)
    return result


def create_camera_actor(g, scale=0.05):
    """ build open3d camera polydata """
    camera_actor = o3d.geometry.LineSet(
        points=o3d.utility.Vector3dVector(scale * CAM_POINTS),
        lines=o3d.utility.Vector2iVector(CAM_LINES))

    color = (g * 1.0, 0.5 * (1-g), 0.9 * (1-g))
    camera_actor.paint_uniform_color(color)
    return camera_actor


def create_point_actor(points, colors):
    """ open3d point cloud from numpy array """
    point_cloud = o3d.geometry.PointCloud()
    point_cloud.points = o3d.utility.Vector3dVector(points)
    point_cloud.colors = o3d.utility.Vector3dVector(colors)
    return point_cloud


def droid_visualization(video, save_path, device="cuda:0"):
    """ DROID visualization frontend """

    torch.cuda.set_device(0)
    droid_visualization.video = video
    droid_visualization.cameras = {}
    droid_visualization.points = {}
    droid_visualization.warmup = 8
    droid_visualization.scale = 1.0
    droid_visualization.ix = 0
    print("headless droid_visualization")


    droid_visualization.filter_thresh = 0.3  #0.005

    def increase_filter(vis):
        droid_visualization.filter_thresh *= 2
        with droid_visualization.video.get_lock():
            droid_visualization.video.dirty[:droid_visualization.video.counter.value] = True

    def decrease_filter(vis):
        droid_visualization.filter_thresh *= 0.5
        with droid_visualization.video.get_lock():
            droid_visualization.video.dirty[:droid_visualization.video.counter.value] = True   
    
    def animation_callback(vis):
        cam = vis.get_view_control().convert_to_pinhole_camera_parameters()

        with torch.no_grad():

            with video.get_lock():
                t = video.counter.value 
                dirty_index, = torch.where(video.dirty.clone())
                dirty_index = dirty_index

            if len(dirty_index) == 0:
                return

            video.dirty[dirty_index] = False

            # convert poses to 4x4 matrix
            poses = torch.index_select(video.poses, 0, dirty_index)
            disps = torch.index_select(video.disps, 0, dirty_index)
            Ps = SE3(poses).inv().matrix().cpu().numpy()

            images = torch.index_select(video.images, 0, dirty_index)
            images = images.cpu()[:,[2,1,0],3::8,3::8].permute(0,2,3,1) / 255.0
            points = droid_backends.iproj(SE3(poses).inv().data, disps, video.intrinsics[0]).cpu()

            thresh = droid_visualization.filter_thresh * torch.ones_like(disps.mean(dim=[1,2]))
            
            count = droid_backends.depth_filter(
                video.poses, video.disps, video.intrinsics[0], dirty_index, thresh)
            
            count = count.cpu()
            disps = disps.cpu()
            masks = ((count >= 2) & (disps > .5*disps.mean(dim=[1,2], keepdim=True)))     
        
            for i in range(len(dirty_index)):
                pose = Ps[i]
                ix = dirty_index[i].item()

                if ix in droid_visualization.cameras:
                    vis.remove_geometry(droid_visualization.cameras[ix])
                    del droid_visualization.cameras[ix]

                if ix in droid_visualization.points:
                    vis.remove_geometry(droid_visualization.points[ix])
                    del droid_visualization.points[ix]

                ### add camera actor ###
                cam_actor = create_camera_actor(True)
                cam_actor.transform(pose)
                vis.add_geometry(cam_actor)
                droid_visualization.cameras[ix] = cam_actor
                
                
                mask = masks[i].reshape(-1)
                pts = points[i].reshape(-1, 3)[mask].cpu().numpy()
                clr = images[i].reshape(-1, 3)[mask].cpu().numpy()
                
                ## add point actor ###
                point_actor = create_point_actor(pts, clr)
                vis.add_geometry(point_actor)
                droid_visualization.points[ix] = point_actor

            ### Hack to save Point Cloud Data and Camnera results ###
            
            # Save points
            pcd_points = o3d.geometry.PointCloud()
            for p in droid_visualization.points.items():
                pcd_points += p[1]
            o3d.io.write_point_cloud(f"{save_path}/points.ply", pcd_points, write_ascii=False)
                
            # Save pose
            pcd_camera = create_camera_actor(True)
            for c in droid_visualization.cameras.items():
                pcd_camera += c[1]

            o3d.io.write_line_set(f"{save_path}/camera.ply", pcd_camera, write_ascii=False)

            ### end ###
            
            # hack to allow interacting with vizualization during inference
            if len(droid_visualization.cameras) >= droid_visualization.warmup:
                cam = vis.get_view_control().convert_from_pinhole_camera_parameters(cam)

            droid_visualization.ix += 1
            vis.poll_events()
            vis.update_renderer()

    ### create Open3D visualization ###
    vis = o3d.visualization.VisualizerWithKeyCallback()
    vis.register_animation_callback(animation_callback)
    vis.register_key_callback(ord("S"), increase_filter)
    vis.register_key_callback(ord("A"), decrease_filter)

    vis.create_window(height=540, width=960)
    # vis.create_window(height=512, width=384)
    vis.get_render_option().load_from_json("thirdparty/DROID-SLAM//misc/renderoption.json")

    vis.run()
    vis.destroy_window()