Spaces:
Running
Running
File size: 9,377 Bytes
5f028d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import sys
sys.path.insert(0, 'thirdparty/DROID-SLAM/droid_slam')
sys.path.insert(0, 'thirdparty/DROID-SLAM')
from tqdm import tqdm
import numpy as np
import torch
import os
import argparse
from PIL import Image
import cv2
from glob import glob
from droid import Droid
from torch.multiprocessing import Process
import evo
from evo.core.trajectory import PoseTrajectory3D
from evo.tools import file_interface
from evo.core import sync
import evo.main_ape as main_ape
from evo.core.metrics import PoseRelation
from pycocotools import mask as masktool
from torchvision.transforms import Resize
# Some default settings for DROID-SLAM
parser = argparse.ArgumentParser()
parser.add_argument("--imagedir", type=str, help="path to image directory")
parser.add_argument("--calib", type=str, help="path to calibration file")
parser.add_argument("--t0", default=0, type=int, help="starting frame")
parser.add_argument("--stride", default=1, type=int, help="frame stride")
parser.add_argument("--weights", default="weights/external/droid.pth")
parser.add_argument("--buffer", type=int, default=512)
parser.add_argument("--image_size", default=[240, 320])
parser.add_argument("--disable_vis", action="store_true")
parser.add_argument("--beta", type=float, default=0.3, help="weight for translation / rotation components of flow")
parser.add_argument("--filter_thresh", type=float, default=2.4, help="how much motion before considering new keyframe")
parser.add_argument("--warmup", type=int, default=8, help="number of warmup frames")
parser.add_argument("--keyframe_thresh", type=float, default=4.0, help="threshold to create a new keyframe")
parser.add_argument("--frontend_thresh", type=float, default=16.0, help="add edges between frames whithin this distance")
parser.add_argument("--frontend_window", type=int, default=25, help="frontend optimization window")
parser.add_argument("--frontend_radius", type=int, default=2, help="force edges between frames within radius")
parser.add_argument("--frontend_nms", type=int, default=1, help="non-maximal supression of edges")
parser.add_argument("--backend_thresh", type=float, default=22.0)
parser.add_argument("--backend_radius", type=int, default=2)
parser.add_argument("--backend_nms", type=int, default=3)
parser.add_argument("--upsample", action="store_true")
parser.add_argument("--reconstruction_path", help="path to saved reconstruction")
args = parser.parse_args([])
args.stereo = False
args.upsample = True
args.disable_vis = True
torch.multiprocessing.set_start_method('spawn')
def est_calib(imagedir):
""" Roughly estimate intrinsics by image dimensions """
if isinstance(imagedir, list):
imgfiles = imagedir
else:
imgfiles = sorted(glob(f'{imagedir}/*.jpg'))
image = cv2.imread(imgfiles[0])
h0, w0, _ = image.shape
focal = np.max([h0, w0])
cx, cy = w0/2., h0/2.
calib = [focal, focal, cx, cy]
return calib
def get_dimention(imagedir):
""" Get proper image dimension for DROID """
if isinstance(imagedir, list):
imgfiles = imagedir
else:
imgfiles = sorted(glob(f'{imagedir}/*.jpg'))
image = cv2.imread(imgfiles[0])
h0, w0, _ = image.shape
h1 = int(h0 * np.sqrt((384 * 512) / (h0 * w0)))
w1 = int(w0 * np.sqrt((384 * 512) / (h0 * w0)))
image = cv2.resize(image, (w1, h1))
image = image[:h1-h1%8, :w1-w1%8]
H, W, _ = image.shape
return H, W
def image_stream(imagedir, calib, stride, max_frame=None):
""" Image generator for DROID """
fx, fy, cx, cy = calib[:4]
K = np.eye(3)
K[0,0] = fx
K[0,2] = cx
K[1,1] = fy
K[1,2] = cy
if isinstance(imagedir, list):
image_list = imagedir
else:
image_list = sorted(glob(f'{imagedir}/*.jpg'))
image_list = image_list[::stride]
if max_frame is not None:
image_list = image_list[:max_frame]
for t, imfile in enumerate(image_list):
image = cv2.imread(imfile)
if len(calib) > 4:
image = cv2.undistort(image, K, calib[4:])
h0, w0, _ = image.shape
h1 = int(h0 * np.sqrt((384 * 512) / (h0 * w0)))
w1 = int(w0 * np.sqrt((384 * 512) / (h0 * w0)))
image = cv2.resize(image, (w1, h1))
image = image[:h1-h1%8, :w1-w1%8]
image = torch.as_tensor(image).permute(2, 0, 1)
intrinsics = torch.as_tensor([fx, fy, cx, cy])
intrinsics[0::2] *= (w1 / w0)
intrinsics[1::2] *= (h1 / h0)
yield t, image[None], intrinsics
def run_slam(imagedir, masks, calib=None, depth=None, stride=1,
filter_thresh=2.4, disable_vis=True):
""" Maksed DROID-SLAM """
droid = None
depth = None
args.filter_thresh = filter_thresh
args.disable_vis = disable_vis
masks = masks[::stride]
img_msks, conf_msks = preprocess_masks(imagedir, masks)
if calib is None:
calib = est_calib(imagedir)
for (t, image, intrinsics) in tqdm(image_stream(imagedir, calib, stride)):
if droid is None:
args.image_size = [image.shape[2], image.shape[3]]
droid = Droid(args)
img_msk = img_msks[t]
conf_msk = conf_msks[t]
image = image * (img_msk < 0.5)
# cv2.imwrite('debug.png', image[0].permute(1, 2, 0).numpy())
droid.track(t, image, intrinsics=intrinsics, depth=depth, mask=conf_msk)
traj = droid.terminate(image_stream(imagedir, calib, stride))
return droid, traj
def run_droid_slam(imagedir, calib=None, depth=None, stride=1,
filter_thresh=2.4, disable_vis=True):
""" Maksed DROID-SLAM """
droid = None
depth = None
args.filter_thresh = filter_thresh
args.disable_vis = disable_vis
if calib is None:
calib = est_calib(imagedir)
for (t, image, intrinsics) in tqdm(image_stream(imagedir, calib, stride)):
if droid is None:
args.image_size = [image.shape[2], image.shape[3]]
droid = Droid(args)
droid.track(t, image, intrinsics=intrinsics, depth=depth)
traj = droid.terminate(image_stream(imagedir, calib, stride))
return droid, traj
def eval_slam(traj_est, cam_t, cam_q, return_traj=True, correct_scale=False, align=True, align_origin=False):
""" Evaluation for SLAM """
tstamps = np.array([i for i in range(len(traj_est))], dtype=np.float32)
traj_est = PoseTrajectory3D(
positions_xyz=traj_est[:,:3],
orientations_quat_wxyz=traj_est[:,3:],
timestamps=tstamps)
traj_ref = PoseTrajectory3D(
positions_xyz=cam_t.copy(),
orientations_quat_wxyz=cam_q.copy(),
timestamps=tstamps)
traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est)
result = main_ape.ape(traj_ref, traj_est, est_name='traj',
pose_relation=PoseRelation.translation_part, align=align, align_origin=align_origin,
correct_scale=correct_scale)
stats = result.stats
if return_traj:
return stats, traj_ref, traj_est
return stats
def test_slam(imagedir, img_msks, conf_msks, calib, stride=10, max_frame=50):
""" Shorter SLAM step to test reprojection error """
args = parser.parse_args([])
args.stereo = False
args.upsample = False
args.disable_vis = True
args.frontend_window = 10
args.frontend_thresh = 10
droid = None
for (t, image, intrinsics) in image_stream(imagedir, calib, stride, max_frame):
if droid is None:
args.image_size = [image.shape[2], image.shape[3]]
droid = Droid(args)
img_msk = img_msks[t]
conf_msk = conf_msks[t]
image = image * (img_msk < 0.5)
droid.track(t, image, intrinsics=intrinsics, mask=conf_msk)
reprojection_error = droid.compute_error()
del droid
return reprojection_error
def search_focal_length(img_folder, masks, stride=10, max_frame=50,
low=500, high=1500, step=100):
""" Search for a good focal length by SLAM reprojection error """
masks = masks[::stride]
masks = masks[:max_frame]
img_msks, conf_msks = preprocess_masks(img_folder, masks)
# default estimate
calib = np.array(est_calib(img_folder))
best_focal = calib[0]
best_err = test_slam(img_folder, img_msks, conf_msks,
stride=stride, calib=calib, max_frame=max_frame)
# search based on slam reprojection error
for focal in range(low, high, step):
calib[:2] = focal
err = test_slam(img_folder, img_msks, conf_msks,
stride=stride, calib=calib, max_frame=max_frame)
if err < best_err:
best_err = err
best_focal = focal
print('Best focal length:', best_focal)
return best_focal
def preprocess_masks(img_folder, masks):
""" Resize masks for masked droid """
H, W = get_dimention(img_folder)
resize_1 = Resize((H, W), antialias=True)
resize_2 = Resize((H//8, W//8), antialias=True)
img_msks = []
for i in range(0, len(masks), 500):
m = resize_1(masks[i:i+500])
img_msks.append(m)
img_msks = torch.cat(img_msks)
conf_msks = []
for i in range(0, len(masks), 500):
m = resize_2(masks[i:i+500])
conf_msks.append(m)
conf_msks = torch.cat(conf_msks)
return img_msks, conf_msks
|