File size: 11,879 Bytes
5f028d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# Useful rendering functions from WHAM (some modification)

import cv2
import torch
import numpy as np

from pytorch3d.renderer import (
    PerspectiveCameras,
    TexturesVertex,
    PointLights,
    Materials,
    RasterizationSettings,
    MeshRenderer,
    MeshRasterizer,
    SoftPhongShader,
)
from pytorch3d.structures import Meshes
from pytorch3d.structures.meshes import join_meshes_as_scene
from pytorch3d.renderer.cameras import look_at_rotation
from pytorch3d.renderer.camera_conversions import _cameras_from_opencv_projection

from .tools import get_colors, checkerboard_geometry


def overlay_image_onto_background(image, mask, bbox, background):
    if isinstance(image, torch.Tensor):
        image = image.detach().cpu().numpy()
    if isinstance(mask, torch.Tensor):
        mask = mask.detach().cpu().numpy()

    out_image = background.copy()
    bbox = bbox[0].int().cpu().numpy().copy()
    roi_image = out_image[bbox[1]:bbox[3], bbox[0]:bbox[2]]

    roi_image[mask] = image[mask]
    out_image[bbox[1]:bbox[3], bbox[0]:bbox[2]] = roi_image

    return out_image


def update_intrinsics_from_bbox(K_org, bbox):
    device, dtype = K_org.device, K_org.dtype
    
    K = torch.zeros((K_org.shape[0], 4, 4)
    ).to(device=device, dtype=dtype)
    K[:, :3, :3] = K_org.clone()
    K[:, 2, 2] = 0
    K[:, 2, -1] = 1
    K[:, -1, 2] = 1
    
    image_sizes = []
    for idx, bbox in enumerate(bbox):
        left, upper, right, lower = bbox
        cx, cy = K[idx, 0, 2], K[idx, 1, 2]

        new_cx = cx - left
        new_cy = cy - upper
        new_height = max(lower - upper, 1)
        new_width = max(right - left, 1)
        new_cx = new_width - new_cx
        new_cy = new_height - new_cy

        K[idx, 0, 2] = new_cx
        K[idx, 1, 2] = new_cy
        image_sizes.append((int(new_height), int(new_width)))

    return K, image_sizes


def perspective_projection(x3d, K, R=None, T=None):
    if R != None:
        x3d = torch.matmul(R, x3d.transpose(1, 2)).transpose(1, 2)
    if T != None:
        x3d = x3d + T.transpose(1, 2)

    x2d = torch.div(x3d, x3d[..., 2:])
    x2d = torch.matmul(K, x2d.transpose(-1, -2)).transpose(-1, -2)[..., :2]
    return x2d


def compute_bbox_from_points(X, img_w, img_h, scaleFactor=1.2):
    left = torch.clamp(X.min(1)[0][:, 0], min=0, max=img_w)
    right = torch.clamp(X.max(1)[0][:, 0], min=0, max=img_w)
    top = torch.clamp(X.min(1)[0][:, 1], min=0, max=img_h)
    bottom = torch.clamp(X.max(1)[0][:, 1], min=0, max=img_h)

    cx = (left + right) / 2
    cy = (top + bottom) / 2
    width = (right - left)
    height = (bottom - top)

    new_left = torch.clamp(cx - width/2 * scaleFactor, min=0, max=img_w-1)
    new_right = torch.clamp(cx + width/2 * scaleFactor, min=1, max=img_w)
    new_top = torch.clamp(cy - height / 2 * scaleFactor, min=0, max=img_h-1)
    new_bottom = torch.clamp(cy + height / 2 * scaleFactor, min=1, max=img_h)

    bbox = torch.stack((new_left.detach(), new_top.detach(),
                        new_right.detach(), new_bottom.detach())).int().float().T
    
    return bbox


class Renderer():
    def __init__(self, width, height, focal_length, device,  
                 bin_size=None, max_faces_per_bin=None):

        self.width = width
        self.height = height
        self.focal_length = focal_length

        self.device = device

        self.initialize_camera_params()
        self.lights = PointLights(device=device, location=[[0.0, 0.0, -10.0]])
        self.create_renderer(bin_size, max_faces_per_bin)

    def create_renderer(self, bin_size, max_faces_per_bin):
        self.renderer = MeshRenderer(
            rasterizer=MeshRasterizer(
                raster_settings=RasterizationSettings(
                    image_size=self.image_sizes[0],
                    blur_radius=1e-5, bin_size=bin_size, 
                    max_faces_per_bin=max_faces_per_bin),
            ),
            shader=SoftPhongShader(
                device=self.device,
                lights=self.lights,
            )
        )

    def initialize_camera_params(self):
        """Hard coding for camera parameters
        TODO: Do some soft coding"""

        # Extrinsics
        self.R = torch.diag(
            torch.tensor([1, 1, 1])
        ).float().to(self.device).unsqueeze(0)

        self.T = torch.tensor(
            [0, 0, 0]
        ).unsqueeze(0).float().to(self.device)

        # Intrinsics
        self.K = torch.tensor(
            [[self.focal_length, 0, self.width/2],
            [0, self.focal_length, self.height/2],
            [0, 0, 1]]
        ).unsqueeze(0).float().to(self.device)
        self.bboxes = torch.tensor([[0, 0, self.width, self.height]]).float()
        self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, self.bboxes)

        # self.K_full = self.K  # test
        self.cameras = self.create_camera()

    def create_camera(self, R=None, T=None):
        if R is not None:
            self.R = R.clone().view(1, 3, 3).to(self.device)
        if T is not None:
            self.T = T.clone().view(1, 3).to(self.device)

        return PerspectiveCameras(
            device=self.device,
            R=self.R, #.mT,
            T=self.T,
            K=self.K_full,
            image_size=self.image_sizes,
            in_ndc=False)
    
    def create_camera_from_cv(self, R, T, K=None, image_size=None):
        # R: [1, 3, 3] Tensor
        # T: [1, 3] Tensor
        # K: [1, 3, 3] Tensor
        # image_size: [1, 2] Tensor in HW
        if K is None:
            K = self.K

        if image_size is None:
            image_size = torch.tensor(self.image_sizes)

        cameras = _cameras_from_opencv_projection(R, T, K, image_size)
        lights = PointLights(device=K.device, location=T)

        return cameras, lights
               
    def set_ground(self, length, center_x, center_z):
        device = self.device
        v, f, vc, fc = map(torch.from_numpy, checkerboard_geometry(length=length, c1=center_x, c2=center_z, up="y"))
        v, f, vc = v.to(device), f.to(device), vc.to(device)
        self.ground_geometry = [v, f, vc]


    def update_bbox(self, x3d, scale=2.0, mask=None):
        """ Update bbox of cameras from the given 3d points

        x3d: input 3D keypoints (or vertices), (num_frames, num_points, 3)
        """

        if x3d.size(-1) != 3:
            x2d = x3d.unsqueeze(0)
        else:
            x2d = perspective_projection(x3d.unsqueeze(0), self.K, self.R, self.T.reshape(1, 3, 1))

        if mask is not None:
            x2d = x2d[:, ~mask]

        bbox = compute_bbox_from_points(x2d, self.width, self.height, scale)
        self.bboxes = bbox

        self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
        self.cameras = self.create_camera()
        self.create_renderer()

    def reset_bbox(self,):
        bbox = torch.zeros((1, 4)).float().to(self.device)
        bbox[0, 2] = self.width
        bbox[0, 3] = self.height
        self.bboxes = bbox

        self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
        self.cameras = self.create_camera()
        self.create_renderer()

    def render_mesh(self, vertices, background, colors=[0.8, 0.8, 0.8]):
        self.update_bbox(vertices[::50], scale=1.2)
        vertices = vertices.unsqueeze(0)
        
        if colors[0] > 1: colors = [c / 255. for c in colors]
        verts_features = torch.tensor(colors).reshape(1, 1, 3).to(device=vertices.device, dtype=vertices.dtype)
        verts_features = verts_features.repeat(1, vertices.shape[1], 1)
        textures = TexturesVertex(verts_features=verts_features)
        
        mesh = Meshes(verts=vertices,
                      faces=self.faces,
                      textures=textures,)
        
        materials = Materials(
            device=self.device,
            specular_color=(colors, ),
            shininess=0
            )

        results = torch.flip(
            self.renderer(mesh, materials=materials, cameras=self.cameras, lights=self.lights),
            [1, 2]
        )
        image = results[0, ..., :3] * 255
        mask = results[0, ..., -1] > 1e-3

        image = overlay_image_onto_background(image, mask, self.bboxes, background.copy())
        self.reset_bbox()
        return image
    
    
    def render_with_ground(self, verts, faces, colors, cameras, lights):
        """
        :param verts (B, V, 3)
        :param faces (F, 3)
        :param colors (B, 3)
        """
        
        # (B, V, 3), (B, F, 3), (B, V, 3)
        verts, faces, colors = prep_shared_geometry(verts, faces, colors)
        # (V, 3), (F, 3), (V, 3)
        gv, gf, gc = self.ground_geometry
        verts = list(torch.unbind(verts, dim=0)) + [gv]
        faces = list(torch.unbind(faces, dim=0)) + [gf]
        colors = list(torch.unbind(colors, dim=0)) + [gc[..., :3]]
        mesh = create_meshes(verts, faces, colors)

        materials = Materials(
            device=self.device,
            shininess=0
        )
        
        results = self.renderer(mesh, cameras=cameras, lights=lights, materials=materials)
        image = (results[0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
            
        return image
    
    def render_multiple(self, verts_list, faces, colors_list, cameras, lights):
        """
        :param verts (B, V, 3)
        :param faces (F, 3)
        :param colors (B, 3)
        """
        # (B, V, 3), (B, F, 3), (B, V, 3)
        verts_, faces_, colors_ = [], [], []
        for i, verts in enumerate(verts_list):
            colors = colors_list[[i]]
            verts_i, faces_i, colors_i = prep_shared_geometry(verts, faces, colors)
            if i == 0:
                verts_ = list(torch.unbind(verts_i, dim=0))
                faces_ = list(torch.unbind(faces_i, dim=0)) 
                colors_ = list(torch.unbind(colors_i, dim=0))
            else:
                verts_ += list(torch.unbind(verts_i, dim=0))
                faces_ += list(torch.unbind(faces_i, dim=0)) 
                colors_ += list(torch.unbind(colors_i, dim=0)) 

        # # (V, 3), (F, 3), (V, 3)
        # gv, gf, gc = self.ground_geometry
        # verts_ += [gv]
        # faces_ += [gf]
        # colors_ += [gc[..., :3]]
        mesh = create_meshes(verts_, faces_, colors_)

        materials = Materials(
            device=self.device,
            shininess=0
        )
        results = self.renderer(mesh, cameras=cameras, lights=lights, materials=materials)
        image = (results[0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
        mask = results[0, ..., -1].cpu().numpy() > 0
        return image, mask
    
    
def prep_shared_geometry(verts, faces, colors):
    """
    :param verts (B, V, 3)
    :param faces (F, 3)
    :param colors (B, 4)
    """
    B, V, _ = verts.shape
    F, _ = faces.shape
    colors = colors.unsqueeze(1).expand(B, V, -1)[..., :3]
    faces = faces.unsqueeze(0).expand(B, F, -1)
    return verts, faces, colors


def create_meshes(verts, faces, colors):
    """
    :param verts (B, V, 3)
    :param faces (B, F, 3)
    :param colors (B, V, 3)
    """
    textures = TexturesVertex(verts_features=colors)
    meshes = Meshes(verts=verts, faces=faces, textures=textures)
    return join_meshes_as_scene(meshes)


def get_global_cameras(verts, device, distance=5, position=(-5.0, 5.0, 0.0)):
    positions = torch.tensor([position]).repeat(len(verts), 1)
    targets = verts.mean(1)
    
    directions = targets - positions
    directions = directions / torch.norm(directions, dim=-1).unsqueeze(-1) * distance
    positions = targets - directions
    
    rotation = look_at_rotation(positions, targets, ).mT
    translation = -(rotation @ positions.unsqueeze(-1)).squeeze(-1)
    
    lights = PointLights(device=device, location=[position])
    return rotation, translation, lights