BasilTh
commited on
Commit
Β·
7d9bb79
1
Parent(s):
93d3bfa
Deploy updated SLM customer-support chatbot
Browse files- SLM_CService.py +60 -23
SLM_CService.py
CHANGED
@@ -1,14 +1,18 @@
|
|
1 |
# ββ SLM_CService.py βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
2 |
-
#
|
3 |
|
4 |
import os
|
5 |
import re
|
6 |
-
os.environ["OMP_NUM_THREADS"] = "1" # quiet libgomp noise in Spaces
|
7 |
-
os.environ.pop("HF_HUB_OFFLINE", None) # ensure online Hub access if set
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
import torch
|
14 |
from transformers import AutoTokenizer, BitsAndBytesConfig, pipeline
|
@@ -16,11 +20,18 @@ from peft import PeftModel
|
|
16 |
from langchain.memory import ConversationBufferMemory
|
17 |
|
18 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
19 |
-
# Hub repo that contains
|
20 |
REPO = "ThomasBasil/bitext-qlora-tinyllama"
|
21 |
BASE = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# 4-bit NF4 quantization config (QLoRA-style)
|
|
|
24 |
bnb_cfg = BitsAndBytesConfig(
|
25 |
load_in_4bit=True,
|
26 |
bnb_4bit_quant_type="nf4",
|
@@ -28,13 +39,24 @@ bnb_cfg = BitsAndBytesConfig(
|
|
28 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
29 |
)
|
30 |
|
31 |
-
# ----
|
|
|
32 |
def _load_tokenizer(repo_id: str):
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
try:
|
35 |
tok = AutoTokenizer.from_pretrained(repo_id, use_fast=False)
|
36 |
except Exception:
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# sensible defaults for causal LM
|
39 |
if tok.pad_token_id is None and tok.eos_token_id is not None:
|
40 |
tok.pad_token_id = tok.eos_token_id
|
@@ -42,29 +64,42 @@ def _load_tokenizer(repo_id: str):
|
|
42 |
tok.truncation_side = "right"
|
43 |
return tok
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
tokenizer = _load_tokenizer(REPO)
|
46 |
|
47 |
-
# ---- Base model (Unsloth) ----
|
48 |
model = unsloth.FastLanguageModel.from_pretrained(
|
49 |
BASE,
|
50 |
load_in_4bit=True,
|
51 |
-
quantization_config=bnb_cfg,
|
52 |
device_map="auto",
|
53 |
trust_remote_code=True,
|
54 |
)
|
55 |
|
56 |
-
# ---- Apply your LoRA adapter from the same repo ----
|
57 |
-
def _attach_adapter(base_model, repo_id: str):
|
58 |
-
# Try repo root; if the adapter lives under adapter/, use subfolder.
|
59 |
-
try:
|
60 |
-
return PeftModel.from_pretrained(base_model, repo_id)
|
61 |
-
except Exception:
|
62 |
-
return PeftModel.from_pretrained(base_model, repo_id, subfolder="adapter")
|
63 |
-
|
64 |
model = _attach_adapter(model, REPO)
|
65 |
model.eval()
|
66 |
|
67 |
-
#
|
|
|
68 |
chat_pipe = pipeline(
|
69 |
"text-generation",
|
70 |
model=model,
|
@@ -101,17 +136,18 @@ def handle_return_policy(_=None):
|
|
101 |
def handle_gratitude(_=None):
|
102 |
return "Youβre welcome! Is there anything else I can help with?"
|
103 |
def handle_escalation(_=None):
|
104 |
-
return "Iβm sorry, I donβt have that information. Would you like me to connect you with a human agent?"
|
105 |
|
106 |
stored_order = None
|
107 |
pending_intent = None
|
108 |
|
|
|
109 |
def _history_to_prompt(user_input: str) -> str:
|
110 |
"""Build a plain-text prompt that includes chat history for fallback generation."""
|
111 |
hist = memory.load_memory_variables({}).get("chat_history", [])
|
112 |
prompt = "You are a helpful support assistant.\n"
|
113 |
for msg in hist:
|
114 |
-
# LangChain messages often have .type ('human'/'ai') and .content
|
115 |
mtype = getattr(msg, "type", "")
|
116 |
role = "User" if mtype == "human" else "Assistant"
|
117 |
content = getattr(msg, "content", "")
|
@@ -119,6 +155,7 @@ def _history_to_prompt(user_input: str) -> str:
|
|
119 |
prompt += f"User: {user_input}\nAssistant: "
|
120 |
return prompt
|
121 |
|
|
|
122 |
def chat_with_memory(user_input: str) -> str:
|
123 |
"""Main entrypoint called by app.py."""
|
124 |
global stored_order, pending_intent
|
|
|
1 |
# ββ SLM_CService.py βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
2 |
+
# Model load + FSM + conversational memory for your Gradio Space.
|
3 |
|
4 |
import os
|
5 |
import re
|
|
|
|
|
6 |
|
7 |
+
# Keep OpenMP quiet in Spaces logs
|
8 |
+
os.environ["OMP_NUM_THREADS"] = "1"
|
9 |
+
# Ensure we don't accidentally run offline
|
10 |
+
os.environ.pop("HF_HUB_OFFLINE", None)
|
11 |
+
|
12 |
+
# 1) Unsloth must be imported BEFORE transformers/peft to apply optimizations.
|
13 |
+
# (Otherwise you may see perf/memory warnings.)
|
14 |
+
# Ref: Unsloth team warning in issues.
|
15 |
+
import unsloth # noqa: E402 # must be before transformers/peft :contentReference[oaicite:2]{index=2}
|
16 |
|
17 |
import torch
|
18 |
from transformers import AutoTokenizer, BitsAndBytesConfig, pipeline
|
|
|
20 |
from langchain.memory import ConversationBufferMemory
|
21 |
|
22 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
23 |
+
# Your Hub repo that contains the tokenizer + PEFT adapter files
|
24 |
REPO = "ThomasBasil/bitext-qlora-tinyllama"
|
25 |
BASE = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
26 |
|
27 |
+
# If your files are nested, set this to the exact subfolder path (or use
|
28 |
+
# the HF_SUBFOLDER env var from Space β Settings β Variables).
|
29 |
+
# Example from your screenshot:
|
30 |
+
DEFAULT_SUBFOLDER = "bitext-qlora-tinyllama-20250807T224217Z-1-001/bitext-qlora-tinyllama"
|
31 |
+
SUBFOLDER = os.environ.get("HF_SUBFOLDER", DEFAULT_SUBFOLDER)
|
32 |
+
|
33 |
# 4-bit NF4 quantization config (QLoRA-style)
|
34 |
+
# Ref: Transformers bitsandbytes quantization docs. :contentReference[oaicite:3]{index=3}
|
35 |
bnb_cfg = BitsAndBytesConfig(
|
36 |
load_in_4bit=True,
|
37 |
bnb_4bit_quant_type="nf4",
|
|
|
39 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
40 |
)
|
41 |
|
42 |
+
# ---- Robust helpers to load from root or subfolder ---------------------------
|
43 |
+
|
44 |
def _load_tokenizer(repo_id: str):
|
45 |
+
"""
|
46 |
+
Try to load tokenizer from repo root; if missing, try configured subfolder.
|
47 |
+
Transformers supports `subfolder` in from_pretrained for tokenizers. :contentReference[oaicite:4]{index=4}
|
48 |
+
"""
|
49 |
+
# Try at repo root first
|
50 |
try:
|
51 |
tok = AutoTokenizer.from_pretrained(repo_id, use_fast=False)
|
52 |
except Exception:
|
53 |
+
# Try "tokenizer" subdir at root
|
54 |
+
try:
|
55 |
+
tok = AutoTokenizer.from_pretrained(repo_id, subfolder="tokenizer", use_fast=False)
|
56 |
+
except Exception:
|
57 |
+
# Try the provided nested path
|
58 |
+
tok = AutoTokenizer.from_pretrained(repo_id, subfolder=SUBFOLDER, use_fast=False)
|
59 |
+
|
60 |
# sensible defaults for causal LM
|
61 |
if tok.pad_token_id is None and tok.eos_token_id is not None:
|
62 |
tok.pad_token_id = tok.eos_token_id
|
|
|
64 |
tok.truncation_side = "right"
|
65 |
return tok
|
66 |
|
67 |
+
|
68 |
+
def _attach_adapter(base_model, repo_id: str):
|
69 |
+
"""
|
70 |
+
Attach PEFT adapter from root; if not found, try subfolder variants.
|
71 |
+
(PEFT supports kwargs like `subfolder`, though older versions had quirks;
|
72 |
+
if you ever hit issues, place adapter files at repo root.) :contentReference[oaicite:5]{index=5}
|
73 |
+
"""
|
74 |
+
# Try repo root
|
75 |
+
try:
|
76 |
+
return PeftModel.from_pretrained(base_model, repo_id)
|
77 |
+
except Exception:
|
78 |
+
# Try 'adapter' subdir at root
|
79 |
+
try:
|
80 |
+
return PeftModel.from_pretrained(base_model, repo_id, subfolder="adapter")
|
81 |
+
except Exception:
|
82 |
+
# Try the provided nested path
|
83 |
+
return PeftModel.from_pretrained(base_model, repo_id, subfolder=SUBFOLDER)
|
84 |
+
|
85 |
+
|
86 |
+
# ---- Load tokenizer, base model (4-bit), and attach adapter ------------------
|
87 |
+
|
88 |
tokenizer = _load_tokenizer(REPO)
|
89 |
|
|
|
90 |
model = unsloth.FastLanguageModel.from_pretrained(
|
91 |
BASE,
|
92 |
load_in_4bit=True,
|
93 |
+
quantization_config=bnb_cfg, # prefer quantization_config over legacy args
|
94 |
device_map="auto",
|
95 |
trust_remote_code=True,
|
96 |
)
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
model = _attach_adapter(model, REPO)
|
99 |
model.eval()
|
100 |
|
101 |
+
# Transformers pipeline accepts `generate_kwargs` to pass through to .generate().
|
102 |
+
# Ref: Pipelines docs mention `generate_kwargs`. :contentReference[oaicite:6]{index=6}
|
103 |
chat_pipe = pipeline(
|
104 |
"text-generation",
|
105 |
model=model,
|
|
|
136 |
def handle_gratitude(_=None):
|
137 |
return "Youβre welcome! Is there anything else I can help with?"
|
138 |
def handle_escalation(_=None):
|
139 |
+
return "Iβm sorry, I donβt have that information. Would you like me to connect you with a human agent?"
|
140 |
|
141 |
stored_order = None
|
142 |
pending_intent = None
|
143 |
|
144 |
+
|
145 |
def _history_to_prompt(user_input: str) -> str:
|
146 |
"""Build a plain-text prompt that includes chat history for fallback generation."""
|
147 |
hist = memory.load_memory_variables({}).get("chat_history", [])
|
148 |
prompt = "You are a helpful support assistant.\n"
|
149 |
for msg in hist:
|
150 |
+
# LangChain messages often have .type ('human'/'ai') and .content
|
151 |
mtype = getattr(msg, "type", "")
|
152 |
role = "User" if mtype == "human" else "Assistant"
|
153 |
content = getattr(msg, "content", "")
|
|
|
155 |
prompt += f"User: {user_input}\nAssistant: "
|
156 |
return prompt
|
157 |
|
158 |
+
|
159 |
def chat_with_memory(user_input: str) -> str:
|
160 |
"""Main entrypoint called by app.py."""
|
161 |
global stored_order, pending_intent
|