BasilTh
commited on
Commit
Β·
7d9bb79
1
Parent(s):
93d3bfa
Deploy updated SLM customer-support chatbot
Browse files- SLM_CService.py +60 -23
SLM_CService.py
CHANGED
|
@@ -1,14 +1,18 @@
|
|
| 1 |
# ββ SLM_CService.py βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 2 |
-
#
|
| 3 |
|
| 4 |
import os
|
| 5 |
import re
|
| 6 |
-
os.environ["OMP_NUM_THREADS"] = "1" # quiet libgomp noise in Spaces
|
| 7 |
-
os.environ.pop("HF_HUB_OFFLINE", None) # ensure online Hub access if set
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
import torch
|
| 14 |
from transformers import AutoTokenizer, BitsAndBytesConfig, pipeline
|
|
@@ -16,11 +20,18 @@ from peft import PeftModel
|
|
| 16 |
from langchain.memory import ConversationBufferMemory
|
| 17 |
|
| 18 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 19 |
-
# Hub repo that contains
|
| 20 |
REPO = "ThomasBasil/bitext-qlora-tinyllama"
|
| 21 |
BASE = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
# 4-bit NF4 quantization config (QLoRA-style)
|
|
|
|
| 24 |
bnb_cfg = BitsAndBytesConfig(
|
| 25 |
load_in_4bit=True,
|
| 26 |
bnb_4bit_quant_type="nf4",
|
|
@@ -28,13 +39,24 @@ bnb_cfg = BitsAndBytesConfig(
|
|
| 28 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 29 |
)
|
| 30 |
|
| 31 |
-
# ----
|
|
|
|
| 32 |
def _load_tokenizer(repo_id: str):
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
try:
|
| 35 |
tok = AutoTokenizer.from_pretrained(repo_id, use_fast=False)
|
| 36 |
except Exception:
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
# sensible defaults for causal LM
|
| 39 |
if tok.pad_token_id is None and tok.eos_token_id is not None:
|
| 40 |
tok.pad_token_id = tok.eos_token_id
|
|
@@ -42,29 +64,42 @@ def _load_tokenizer(repo_id: str):
|
|
| 42 |
tok.truncation_side = "right"
|
| 43 |
return tok
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
tokenizer = _load_tokenizer(REPO)
|
| 46 |
|
| 47 |
-
# ---- Base model (Unsloth) ----
|
| 48 |
model = unsloth.FastLanguageModel.from_pretrained(
|
| 49 |
BASE,
|
| 50 |
load_in_4bit=True,
|
| 51 |
-
quantization_config=bnb_cfg,
|
| 52 |
device_map="auto",
|
| 53 |
trust_remote_code=True,
|
| 54 |
)
|
| 55 |
|
| 56 |
-
# ---- Apply your LoRA adapter from the same repo ----
|
| 57 |
-
def _attach_adapter(base_model, repo_id: str):
|
| 58 |
-
# Try repo root; if the adapter lives under adapter/, use subfolder.
|
| 59 |
-
try:
|
| 60 |
-
return PeftModel.from_pretrained(base_model, repo_id)
|
| 61 |
-
except Exception:
|
| 62 |
-
return PeftModel.from_pretrained(base_model, repo_id, subfolder="adapter")
|
| 63 |
-
|
| 64 |
model = _attach_adapter(model, REPO)
|
| 65 |
model.eval()
|
| 66 |
|
| 67 |
-
#
|
|
|
|
| 68 |
chat_pipe = pipeline(
|
| 69 |
"text-generation",
|
| 70 |
model=model,
|
|
@@ -101,17 +136,18 @@ def handle_return_policy(_=None):
|
|
| 101 |
def handle_gratitude(_=None):
|
| 102 |
return "Youβre welcome! Is there anything else I can help with?"
|
| 103 |
def handle_escalation(_=None):
|
| 104 |
-
return "Iβm sorry, I donβt have that information. Would you like me to connect you with a human agent?"
|
| 105 |
|
| 106 |
stored_order = None
|
| 107 |
pending_intent = None
|
| 108 |
|
|
|
|
| 109 |
def _history_to_prompt(user_input: str) -> str:
|
| 110 |
"""Build a plain-text prompt that includes chat history for fallback generation."""
|
| 111 |
hist = memory.load_memory_variables({}).get("chat_history", [])
|
| 112 |
prompt = "You are a helpful support assistant.\n"
|
| 113 |
for msg in hist:
|
| 114 |
-
# LangChain messages often have .type ('human'/'ai') and .content
|
| 115 |
mtype = getattr(msg, "type", "")
|
| 116 |
role = "User" if mtype == "human" else "Assistant"
|
| 117 |
content = getattr(msg, "content", "")
|
|
@@ -119,6 +155,7 @@ def _history_to_prompt(user_input: str) -> str:
|
|
| 119 |
prompt += f"User: {user_input}\nAssistant: "
|
| 120 |
return prompt
|
| 121 |
|
|
|
|
| 122 |
def chat_with_memory(user_input: str) -> str:
|
| 123 |
"""Main entrypoint called by app.py."""
|
| 124 |
global stored_order, pending_intent
|
|
|
|
| 1 |
# ββ SLM_CService.py βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 2 |
+
# Model load + FSM + conversational memory for your Gradio Space.
|
| 3 |
|
| 4 |
import os
|
| 5 |
import re
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# Keep OpenMP quiet in Spaces logs
|
| 8 |
+
os.environ["OMP_NUM_THREADS"] = "1"
|
| 9 |
+
# Ensure we don't accidentally run offline
|
| 10 |
+
os.environ.pop("HF_HUB_OFFLINE", None)
|
| 11 |
+
|
| 12 |
+
# 1) Unsloth must be imported BEFORE transformers/peft to apply optimizations.
|
| 13 |
+
# (Otherwise you may see perf/memory warnings.)
|
| 14 |
+
# Ref: Unsloth team warning in issues.
|
| 15 |
+
import unsloth # noqa: E402 # must be before transformers/peft :contentReference[oaicite:2]{index=2}
|
| 16 |
|
| 17 |
import torch
|
| 18 |
from transformers import AutoTokenizer, BitsAndBytesConfig, pipeline
|
|
|
|
| 20 |
from langchain.memory import ConversationBufferMemory
|
| 21 |
|
| 22 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 23 |
+
# Your Hub repo that contains the tokenizer + PEFT adapter files
|
| 24 |
REPO = "ThomasBasil/bitext-qlora-tinyllama"
|
| 25 |
BASE = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 26 |
|
| 27 |
+
# If your files are nested, set this to the exact subfolder path (or use
|
| 28 |
+
# the HF_SUBFOLDER env var from Space β Settings β Variables).
|
| 29 |
+
# Example from your screenshot:
|
| 30 |
+
DEFAULT_SUBFOLDER = "bitext-qlora-tinyllama-20250807T224217Z-1-001/bitext-qlora-tinyllama"
|
| 31 |
+
SUBFOLDER = os.environ.get("HF_SUBFOLDER", DEFAULT_SUBFOLDER)
|
| 32 |
+
|
| 33 |
# 4-bit NF4 quantization config (QLoRA-style)
|
| 34 |
+
# Ref: Transformers bitsandbytes quantization docs. :contentReference[oaicite:3]{index=3}
|
| 35 |
bnb_cfg = BitsAndBytesConfig(
|
| 36 |
load_in_4bit=True,
|
| 37 |
bnb_4bit_quant_type="nf4",
|
|
|
|
| 39 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 40 |
)
|
| 41 |
|
| 42 |
+
# ---- Robust helpers to load from root or subfolder ---------------------------
|
| 43 |
+
|
| 44 |
def _load_tokenizer(repo_id: str):
|
| 45 |
+
"""
|
| 46 |
+
Try to load tokenizer from repo root; if missing, try configured subfolder.
|
| 47 |
+
Transformers supports `subfolder` in from_pretrained for tokenizers. :contentReference[oaicite:4]{index=4}
|
| 48 |
+
"""
|
| 49 |
+
# Try at repo root first
|
| 50 |
try:
|
| 51 |
tok = AutoTokenizer.from_pretrained(repo_id, use_fast=False)
|
| 52 |
except Exception:
|
| 53 |
+
# Try "tokenizer" subdir at root
|
| 54 |
+
try:
|
| 55 |
+
tok = AutoTokenizer.from_pretrained(repo_id, subfolder="tokenizer", use_fast=False)
|
| 56 |
+
except Exception:
|
| 57 |
+
# Try the provided nested path
|
| 58 |
+
tok = AutoTokenizer.from_pretrained(repo_id, subfolder=SUBFOLDER, use_fast=False)
|
| 59 |
+
|
| 60 |
# sensible defaults for causal LM
|
| 61 |
if tok.pad_token_id is None and tok.eos_token_id is not None:
|
| 62 |
tok.pad_token_id = tok.eos_token_id
|
|
|
|
| 64 |
tok.truncation_side = "right"
|
| 65 |
return tok
|
| 66 |
|
| 67 |
+
|
| 68 |
+
def _attach_adapter(base_model, repo_id: str):
|
| 69 |
+
"""
|
| 70 |
+
Attach PEFT adapter from root; if not found, try subfolder variants.
|
| 71 |
+
(PEFT supports kwargs like `subfolder`, though older versions had quirks;
|
| 72 |
+
if you ever hit issues, place adapter files at repo root.) :contentReference[oaicite:5]{index=5}
|
| 73 |
+
"""
|
| 74 |
+
# Try repo root
|
| 75 |
+
try:
|
| 76 |
+
return PeftModel.from_pretrained(base_model, repo_id)
|
| 77 |
+
except Exception:
|
| 78 |
+
# Try 'adapter' subdir at root
|
| 79 |
+
try:
|
| 80 |
+
return PeftModel.from_pretrained(base_model, repo_id, subfolder="adapter")
|
| 81 |
+
except Exception:
|
| 82 |
+
# Try the provided nested path
|
| 83 |
+
return PeftModel.from_pretrained(base_model, repo_id, subfolder=SUBFOLDER)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# ---- Load tokenizer, base model (4-bit), and attach adapter ------------------
|
| 87 |
+
|
| 88 |
tokenizer = _load_tokenizer(REPO)
|
| 89 |
|
|
|
|
| 90 |
model = unsloth.FastLanguageModel.from_pretrained(
|
| 91 |
BASE,
|
| 92 |
load_in_4bit=True,
|
| 93 |
+
quantization_config=bnb_cfg, # prefer quantization_config over legacy args
|
| 94 |
device_map="auto",
|
| 95 |
trust_remote_code=True,
|
| 96 |
)
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
model = _attach_adapter(model, REPO)
|
| 99 |
model.eval()
|
| 100 |
|
| 101 |
+
# Transformers pipeline accepts `generate_kwargs` to pass through to .generate().
|
| 102 |
+
# Ref: Pipelines docs mention `generate_kwargs`. :contentReference[oaicite:6]{index=6}
|
| 103 |
chat_pipe = pipeline(
|
| 104 |
"text-generation",
|
| 105 |
model=model,
|
|
|
|
| 136 |
def handle_gratitude(_=None):
|
| 137 |
return "Youβre welcome! Is there anything else I can help with?"
|
| 138 |
def handle_escalation(_=None):
|
| 139 |
+
return "Iβm sorry, I donβt have that information. Would you like me to connect you with a human agent?"
|
| 140 |
|
| 141 |
stored_order = None
|
| 142 |
pending_intent = None
|
| 143 |
|
| 144 |
+
|
| 145 |
def _history_to_prompt(user_input: str) -> str:
|
| 146 |
"""Build a plain-text prompt that includes chat history for fallback generation."""
|
| 147 |
hist = memory.load_memory_variables({}).get("chat_history", [])
|
| 148 |
prompt = "You are a helpful support assistant.\n"
|
| 149 |
for msg in hist:
|
| 150 |
+
# LangChain messages often have .type ('human'/'ai') and .content
|
| 151 |
mtype = getattr(msg, "type", "")
|
| 152 |
role = "User" if mtype == "human" else "Assistant"
|
| 153 |
content = getattr(msg, "content", "")
|
|
|
|
| 155 |
prompt += f"User: {user_input}\nAssistant: "
|
| 156 |
return prompt
|
| 157 |
|
| 158 |
+
|
| 159 |
def chat_with_memory(user_input: str) -> str:
|
| 160 |
"""Main entrypoint called by app.py."""
|
| 161 |
global stored_order, pending_intent
|