BasilTh
commited on
Commit
Β·
238d37f
1
Parent(s):
cd7eb0b
Deploy updated SLM customer-support chatbot
Browse files- SLM_CService.py +105 -49
SLM_CService.py
CHANGED
@@ -1,25 +1,30 @@
|
|
1 |
# ββ SLM_CService.py βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
2 |
-
# Customer-support-only chatbot with strict NSFW blocking + robust FSM.
|
3 |
|
4 |
import os
|
5 |
import re
|
6 |
from typing import List, Dict
|
7 |
|
|
|
8 |
os.environ["OMP_NUM_THREADS"] = "1"
|
|
|
9 |
os.environ.pop("HF_HUB_OFFLINE", None)
|
10 |
|
11 |
-
# Unsloth
|
12 |
import unsloth # noqa: E402
|
|
|
13 |
import torch
|
14 |
from transformers import AutoTokenizer, BitsAndBytesConfig, pipeline
|
15 |
from peft import PeftModel
|
16 |
from langchain.memory import ConversationBufferMemory
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
GEN_KW = dict(
|
23 |
max_new_tokens=160,
|
24 |
do_sample=True,
|
25 |
top_p=0.9,
|
@@ -28,21 +33,26 @@ GEN_KW = dict(
|
|
28 |
no_repeat_ngram_size=4,
|
29 |
)
|
30 |
|
31 |
-
bnb_cfg = BitsAndBytesConfig(
|
32 |
load_in_4bit=True,
|
33 |
bnb_4bit_quant_type="nf4",
|
34 |
bnb_4bit_use_double_quant=True,
|
35 |
-
bnb_4bit_compute_dtype=torch.float16,
|
36 |
)
|
37 |
|
38 |
-
#
|
|
|
|
|
|
|
|
|
|
|
39 |
tokenizer = AutoTokenizer.from_pretrained(REPO, use_fast=False)
|
40 |
if tokenizer.pad_token_id is None and tokenizer.eos_token_id is not None:
|
41 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
42 |
tokenizer.padding_side = "left"
|
43 |
tokenizer.truncation_side = "right"
|
44 |
|
45 |
-
# Unsloth returns (model, tokenizer)
|
46 |
model, _ = unsloth.FastLanguageModel.from_pretrained(
|
47 |
model_name=BASE,
|
48 |
load_in_4bit=True,
|
@@ -52,11 +62,11 @@ model, _ = unsloth.FastLanguageModel.from_pretrained(
|
|
52 |
)
|
53 |
unsloth.FastLanguageModel.for_inference(model)
|
54 |
|
55 |
-
#
|
56 |
model = PeftModel.from_pretrained(model, REPO)
|
57 |
model.eval()
|
58 |
|
59 |
-
# Text-generation pipeline (pass
|
60 |
chat_pipe = pipeline(
|
61 |
"text-generation",
|
62 |
model=model,
|
@@ -65,52 +75,74 @@ chat_pipe = pipeline(
|
|
65 |
return_full_text=False,
|
66 |
)
|
67 |
|
68 |
-
#
|
69 |
-
# Moderation
|
|
|
70 |
from transformers import TextClassificationPipeline
|
71 |
|
72 |
SEXUAL_TERMS = [
|
|
|
73 |
"sex","sexual","porn","nsfw","fetish","kink","bdsm","nude","naked","anal",
|
74 |
"blowjob","handjob","cum","breast","boobs","vagina","penis","semen","ejaculate",
|
75 |
"doggy","missionary","cowgirl","69","kamasutra","dominatrix","submissive","spank",
|
|
|
76 |
"sex position","have sex","make love","how to flirt","dominant in bed",
|
77 |
]
|
|
|
78 |
def _bad_words_ids(tok, terms: List[str]) -> List[List[int]]:
|
79 |
-
|
|
|
80 |
for t in terms:
|
81 |
-
for v in (t, " "+t):
|
82 |
toks = tok(v, add_special_tokens=False).input_ids
|
83 |
-
if toks:
|
|
|
84 |
return [list(t) for t in ids]
|
|
|
85 |
BAD_WORD_IDS = _bad_words_ids(tokenizer, SEXUAL_TERMS)
|
86 |
|
|
|
87 |
nsfw_cls: TextClassificationPipeline = pipeline(
|
88 |
-
"text-classification",
|
|
|
|
|
89 |
)
|
90 |
toxicity_cls: TextClassificationPipeline = pipeline(
|
91 |
-
"text-classification",
|
|
|
|
|
|
|
92 |
)
|
|
|
93 |
def is_sexual_or_toxic(text: str) -> bool:
|
94 |
t = (text or "").lower()
|
95 |
-
if any(k in t for k in SEXUAL_TERMS):
|
|
|
96 |
try:
|
97 |
res = nsfw_cls(t)[0]
|
98 |
-
if (res.get("label","").lower()=="nsfw") and float(res.get("score",0))>0.60:
|
99 |
-
|
|
|
|
|
100 |
try:
|
101 |
scores = toxicity_cls(t)[0]
|
102 |
-
if any(s["score"]>0.60 and s["label"].lower() in
|
103 |
{"toxic","severe_toxic","obscene","threat","insult","identity_hate"} for s in scores):
|
104 |
return True
|
105 |
-
except Exception:
|
|
|
106 |
return False
|
107 |
|
108 |
REFUSAL = ("Sorry, I canβt help with that. Iβm only for store support "
|
109 |
"(orders, shipping, ETA, tracking, returns, warranty, account).")
|
110 |
|
111 |
-
#
|
112 |
-
# Memory +
|
113 |
-
|
|
|
|
|
|
|
|
|
114 |
|
115 |
SYSTEM_PROMPT = (
|
116 |
"You are a customer-support assistant for our store. Only handle account, "
|
@@ -126,12 +158,16 @@ ALLOWED_KEYWORDS = (
|
|
126 |
)
|
127 |
|
128 |
# Robust order detection:
|
|
|
|
|
129 |
ORDER_RX = re.compile(
|
130 |
r"(?:#\s*([\d]{3,12})|order(?:\s*(?:no\.?|number|id))?\s*#?\s*([\d]{3,12}))",
|
131 |
flags=re.I,
|
132 |
)
|
|
|
133 |
def extract_order(text: str):
|
134 |
-
if not text:
|
|
|
135 |
m = ORDER_RX.search(text)
|
136 |
return (m.group(1) or m.group(2)) if m else None
|
137 |
|
@@ -153,47 +189,56 @@ def handle_gratitude(_=None): return "Youβre welcome! Anything else I can help
|
|
153 |
def handle_escalation(_=None): return "I can connect you with a human agent. Would you like me to do that?"
|
154 |
def handle_ask_action(o): return (f"Iβve saved order #{o}. What would you like to do β status, ETA, tracking link, or cancel?")
|
155 |
|
|
|
156 |
stored_order = None
|
157 |
pending_intent = None
|
158 |
|
159 |
def reset_state():
|
|
|
160 |
global stored_order, pending_intent
|
161 |
stored_order = None
|
162 |
pending_intent = None
|
163 |
-
try:
|
164 |
-
|
|
|
|
|
165 |
return True
|
166 |
|
167 |
-
#
|
168 |
-
|
|
|
|
|
169 |
msgs = [{"role": "system", "content": SYSTEM_PROMPT}]
|
170 |
-
hist = memory.load_memory_variables({}).get(
|
171 |
for m in hist:
|
172 |
role = "user" if getattr(m, "type", "") == "human" else "assistant"
|
173 |
msgs.append({"role": role, "content": getattr(m, "content", "")})
|
174 |
return msgs
|
175 |
|
176 |
def _generate_reply(user_input: str) -> str:
|
|
|
177 |
messages = _lc_to_messages() + [{"role": "user", "content": user_input}]
|
178 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
179 |
out = chat_pipe(
|
180 |
prompt,
|
181 |
eos_token_id=tokenizer.eos_token_id,
|
182 |
pad_token_id=tokenizer.pad_token_id,
|
183 |
-
bad_words_ids=BAD_WORD_IDS,
|
184 |
**GEN_KW,
|
185 |
)[0]["generated_text"]
|
186 |
return out.strip()
|
187 |
|
188 |
-
#
|
|
|
|
|
189 |
def chat_with_memory(user_input: str) -> str:
|
190 |
global stored_order, pending_intent
|
191 |
ui = (user_input or "").strip()
|
192 |
if not ui:
|
193 |
return "How can I help with your order today?"
|
194 |
|
195 |
-
# Fresh session guard
|
196 |
-
hist = memory.load_memory_variables({}).get(
|
197 |
if len(hist) == 0:
|
198 |
stored_order = None
|
199 |
pending_intent = None
|
@@ -206,20 +251,24 @@ def chat_with_memory(user_input: str) -> str:
|
|
206 |
|
207 |
low = ui.lower()
|
208 |
|
209 |
-
# 2) Quick intents
|
210 |
if any(tok in low for tok in ["thank you","thanks","thx"]):
|
211 |
reply = handle_gratitude()
|
212 |
memory.save_context({"input": ui}, {"output": reply})
|
213 |
return reply
|
214 |
|
215 |
-
# 3) PENDING-INTENT SHORT-CIRCUIT (
|
216 |
new_o = extract_order(ui)
|
217 |
if pending_intent:
|
218 |
if new_o:
|
219 |
stored_order = new_o
|
220 |
-
fn = {
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
223 |
reply = fn(stored_order)
|
224 |
pending_intent = None
|
225 |
memory.save_context({"input": ui}, {"output": reply})
|
@@ -229,7 +278,7 @@ def chat_with_memory(user_input: str) -> str:
|
|
229 |
memory.save_context({"input": ui}, {"output": reply})
|
230 |
return reply
|
231 |
|
232 |
-
# 4) If message provides an order number (no pending intent yet), save
|
233 |
if new_o:
|
234 |
stored_order = new_o
|
235 |
reply = handle_ask_action(stored_order)
|
@@ -242,7 +291,7 @@ def chat_with_memory(user_input: str) -> str:
|
|
242 |
memory.save_context({"input": ui}, {"output": reply})
|
243 |
return reply
|
244 |
|
245 |
-
# 6) Intent classification
|
246 |
if any(k in low for k in ["status","where is my order","check status"]):
|
247 |
intent = "status"
|
248 |
elif any(k in low for k in ["how long","eta","delivery time"]):
|
@@ -260,18 +309,24 @@ def chat_with_memory(user_input: str) -> str:
|
|
260 |
else:
|
261 |
intent = "fallback"
|
262 |
|
263 |
-
# 7) Handle intents
|
264 |
if intent in ("status","eta","track","link","cancel"):
|
265 |
if not stored_order:
|
266 |
pending_intent = intent
|
267 |
reply = "Sureβwhatβs your order number (e.g., #12345)?"
|
268 |
else:
|
269 |
-
fn = {
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
271 |
reply = fn(stored_order)
|
272 |
memory.save_context({"input": ui}, {"output": reply})
|
273 |
return reply
|
274 |
|
|
|
275 |
if intent == "warranty_policy":
|
276 |
reply = handle_warranty_policy()
|
277 |
memory.save_context({"input": ui}, {"output": reply})
|
@@ -282,8 +337,9 @@ def chat_with_memory(user_input: str) -> str:
|
|
282 |
memory.save_context({"input": ui}, {"output": reply})
|
283 |
return reply
|
284 |
|
285 |
-
#
|
286 |
reply = _generate_reply(ui)
|
287 |
-
if is_sexual_or_toxic(reply):
|
|
|
288 |
memory.save_context({"input": ui}, {"output": reply})
|
289 |
return reply
|
|
|
1 |
# ββ SLM_CService.py βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
2 |
+
# Customer-support-only chatbot with strict NSFW blocking + robust FSM + proper reset.
|
3 |
|
4 |
import os
|
5 |
import re
|
6 |
from typing import List, Dict
|
7 |
|
8 |
+
# Keep OpenMP logs quiet
|
9 |
os.environ["OMP_NUM_THREADS"] = "1"
|
10 |
+
# Ensure we don't accidentally force offline mode
|
11 |
os.environ.pop("HF_HUB_OFFLINE", None)
|
12 |
|
13 |
+
# ββ Import order matters: Unsloth should come before transformers/peft.
|
14 |
import unsloth # noqa: E402
|
15 |
+
|
16 |
import torch
|
17 |
from transformers import AutoTokenizer, BitsAndBytesConfig, pipeline
|
18 |
from peft import PeftModel
|
19 |
from langchain.memory import ConversationBufferMemory
|
20 |
|
21 |
+
# ==============================
|
22 |
+
# Config
|
23 |
+
# ==============================
|
24 |
+
REPO = "ThomasBasil/bitext-qlora-tinyllama" # your adapter + tokenizer live at repo root
|
25 |
+
BASE = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # base model
|
26 |
|
27 |
+
GEN_KW = dict( # generation params (passed at call time)
|
28 |
max_new_tokens=160,
|
29 |
do_sample=True,
|
30 |
top_p=0.9,
|
|
|
33 |
no_repeat_ngram_size=4,
|
34 |
)
|
35 |
|
36 |
+
bnb_cfg = BitsAndBytesConfig( # 4-bit QLoRA-style loading (needs GPU)
|
37 |
load_in_4bit=True,
|
38 |
bnb_4bit_quant_type="nf4",
|
39 |
bnb_4bit_use_double_quant=True,
|
40 |
+
bnb_4bit_compute_dtype=torch.float16, # T4/A10G-friendly
|
41 |
)
|
42 |
|
43 |
+
# Memory key FIX: use the same key for saving & reading history
|
44 |
+
MEMORY_KEY = "chat_history"
|
45 |
+
|
46 |
+
# ==============================
|
47 |
+
# Load tokenizer & model
|
48 |
+
# ==============================
|
49 |
tokenizer = AutoTokenizer.from_pretrained(REPO, use_fast=False)
|
50 |
if tokenizer.pad_token_id is None and tokenizer.eos_token_id is not None:
|
51 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
52 |
tokenizer.padding_side = "left"
|
53 |
tokenizer.truncation_side = "right"
|
54 |
|
55 |
+
# Unsloth returns (model, tokenizer) -> unpack
|
56 |
model, _ = unsloth.FastLanguageModel.from_pretrained(
|
57 |
model_name=BASE,
|
58 |
load_in_4bit=True,
|
|
|
62 |
)
|
63 |
unsloth.FastLanguageModel.for_inference(model)
|
64 |
|
65 |
+
# Attach your PEFT adapter from repo root
|
66 |
model = PeftModel.from_pretrained(model, REPO)
|
67 |
model.eval()
|
68 |
|
69 |
+
# Text-generation pipeline (pass GEN_KW at call time, not as generate_kwargs)
|
70 |
chat_pipe = pipeline(
|
71 |
"text-generation",
|
72 |
model=model,
|
|
|
75 |
return_full_text=False,
|
76 |
)
|
77 |
|
78 |
+
# ==============================
|
79 |
+
# Moderation (strict)
|
80 |
+
# ==============================
|
81 |
from transformers import TextClassificationPipeline
|
82 |
|
83 |
SEXUAL_TERMS = [
|
84 |
+
# single words
|
85 |
"sex","sexual","porn","nsfw","fetish","kink","bdsm","nude","naked","anal",
|
86 |
"blowjob","handjob","cum","breast","boobs","vagina","penis","semen","ejaculate",
|
87 |
"doggy","missionary","cowgirl","69","kamasutra","dominatrix","submissive","spank",
|
88 |
+
# phrases
|
89 |
"sex position","have sex","make love","how to flirt","dominant in bed",
|
90 |
]
|
91 |
+
|
92 |
def _bad_words_ids(tok, terms: List[str]) -> List[List[int]]:
|
93 |
+
"""Build bad_words_ids for generation; include both 'term' and ' term' variants."""
|
94 |
+
ids = set()
|
95 |
for t in terms:
|
96 |
+
for v in (t, " " + t):
|
97 |
toks = tok(v, add_special_tokens=False).input_ids
|
98 |
+
if toks:
|
99 |
+
ids.add(tuple(toks))
|
100 |
return [list(t) for t in ids]
|
101 |
+
|
102 |
BAD_WORD_IDS = _bad_words_ids(tokenizer, SEXUAL_TERMS)
|
103 |
|
104 |
+
# Lightweight classifiers (optional but helpful defense-in-depth)
|
105 |
nsfw_cls: TextClassificationPipeline = pipeline(
|
106 |
+
"text-classification",
|
107 |
+
model="eliasalbouzidi/distilbert-nsfw-text-classifier",
|
108 |
+
truncation=True,
|
109 |
)
|
110 |
toxicity_cls: TextClassificationPipeline = pipeline(
|
111 |
+
"text-classification",
|
112 |
+
model="unitary/toxic-bert",
|
113 |
+
truncation=True,
|
114 |
+
return_all_scores=True,
|
115 |
)
|
116 |
+
|
117 |
def is_sexual_or_toxic(text: str) -> bool:
|
118 |
t = (text or "").lower()
|
119 |
+
if any(k in t for k in SEXUAL_TERMS):
|
120 |
+
return True
|
121 |
try:
|
122 |
res = nsfw_cls(t)[0]
|
123 |
+
if (res.get("label","").lower() == "nsfw") and float(res.get("score",0)) > 0.60:
|
124 |
+
return True
|
125 |
+
except Exception:
|
126 |
+
pass
|
127 |
try:
|
128 |
scores = toxicity_cls(t)[0]
|
129 |
+
if any(s["score"] > 0.60 and s["label"].lower() in
|
130 |
{"toxic","severe_toxic","obscene","threat","insult","identity_hate"} for s in scores):
|
131 |
return True
|
132 |
+
except Exception:
|
133 |
+
pass
|
134 |
return False
|
135 |
|
136 |
REFUSAL = ("Sorry, I canβt help with that. Iβm only for store support "
|
137 |
"(orders, shipping, ETA, tracking, returns, warranty, account).")
|
138 |
|
139 |
+
# ==============================
|
140 |
+
# Memory + Globals
|
141 |
+
# ==============================
|
142 |
+
memory = ConversationBufferMemory(
|
143 |
+
memory_key=MEMORY_KEY, # β FIX: explicit memory key
|
144 |
+
return_messages=True,
|
145 |
+
)
|
146 |
|
147 |
SYSTEM_PROMPT = (
|
148 |
"You are a customer-support assistant for our store. Only handle account, "
|
|
|
158 |
)
|
159 |
|
160 |
# Robust order detection:
|
161 |
+
# - "#67890" / "# 67890"
|
162 |
+
# - "order 67890", "order no. 67890", "order number 67890", "order id 67890"
|
163 |
ORDER_RX = re.compile(
|
164 |
r"(?:#\s*([\d]{3,12})|order(?:\s*(?:no\.?|number|id))?\s*#?\s*([\d]{3,12}))",
|
165 |
flags=re.I,
|
166 |
)
|
167 |
+
|
168 |
def extract_order(text: str):
|
169 |
+
if not text:
|
170 |
+
return None
|
171 |
m = ORDER_RX.search(text)
|
172 |
return (m.group(1) or m.group(2)) if m else None
|
173 |
|
|
|
189 |
def handle_escalation(_=None): return "I can connect you with a human agent. Would you like me to do that?"
|
190 |
def handle_ask_action(o): return (f"Iβve saved order #{o}. What would you like to do β status, ETA, tracking link, or cancel?")
|
191 |
|
192 |
+
# >>> state that must reset <<<
|
193 |
stored_order = None
|
194 |
pending_intent = None
|
195 |
|
196 |
def reset_state():
|
197 |
+
"""Called by app.py Reset button to clear memory + globals."""
|
198 |
global stored_order, pending_intent
|
199 |
stored_order = None
|
200 |
pending_intent = None
|
201 |
+
try:
|
202 |
+
memory.clear() # wipe the buffer
|
203 |
+
except Exception:
|
204 |
+
pass
|
205 |
return True
|
206 |
|
207 |
+
# ==============================
|
208 |
+
# Chat templating helpers
|
209 |
+
# ==============================
|
210 |
+
def _lc_to_messages() -> List[Dict[str, str]]:
|
211 |
msgs = [{"role": "system", "content": SYSTEM_PROMPT}]
|
212 |
+
hist = memory.load_memory_variables({}).get(MEMORY_KEY, []) or [] # β use same key
|
213 |
for m in hist:
|
214 |
role = "user" if getattr(m, "type", "") == "human" else "assistant"
|
215 |
msgs.append({"role": role, "content": getattr(m, "content", "")})
|
216 |
return msgs
|
217 |
|
218 |
def _generate_reply(user_input: str) -> str:
|
219 |
+
# Format with HF chat template so the model respects roles/system
|
220 |
messages = _lc_to_messages() + [{"role": "user", "content": user_input}]
|
221 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
222 |
out = chat_pipe(
|
223 |
prompt,
|
224 |
eos_token_id=tokenizer.eos_token_id,
|
225 |
pad_token_id=tokenizer.pad_token_id,
|
226 |
+
bad_words_ids=BAD_WORD_IDS, # block sexual tokens at generation time
|
227 |
**GEN_KW,
|
228 |
)[0]["generated_text"]
|
229 |
return out.strip()
|
230 |
|
231 |
+
# ==============================
|
232 |
+
# Main entry
|
233 |
+
# ==============================
|
234 |
def chat_with_memory(user_input: str) -> str:
|
235 |
global stored_order, pending_intent
|
236 |
ui = (user_input or "").strip()
|
237 |
if not ui:
|
238 |
return "How can I help with your order today?"
|
239 |
|
240 |
+
# Fresh session guard: if memory empty, also clear globals
|
241 |
+
hist = memory.load_memory_variables({}).get(MEMORY_KEY, []) or []
|
242 |
if len(hist) == 0:
|
243 |
stored_order = None
|
244 |
pending_intent = None
|
|
|
251 |
|
252 |
low = ui.lower()
|
253 |
|
254 |
+
# 2) Quick intents (gratitude / returns)
|
255 |
if any(tok in low for tok in ["thank you","thanks","thx"]):
|
256 |
reply = handle_gratitude()
|
257 |
memory.save_context({"input": ui}, {"output": reply})
|
258 |
return reply
|
259 |
|
260 |
+
# 3) PENDING-INTENT SHORT-CIRCUIT (fixes "It's #26790" case)
|
261 |
new_o = extract_order(ui)
|
262 |
if pending_intent:
|
263 |
if new_o:
|
264 |
stored_order = new_o
|
265 |
+
fn = {
|
266 |
+
"status": handle_status,
|
267 |
+
"eta": handle_eta,
|
268 |
+
"track": handle_track,
|
269 |
+
"link": handle_link,
|
270 |
+
"cancel": handle_cancel,
|
271 |
+
}[pending_intent]
|
272 |
reply = fn(stored_order)
|
273 |
pending_intent = None
|
274 |
memory.save_context({"input": ui}, {"output": reply})
|
|
|
278 |
memory.save_context({"input": ui}, {"output": reply})
|
279 |
return reply
|
280 |
|
281 |
+
# 4) If message provides an order number (no pending intent yet), save & ask action
|
282 |
if new_o:
|
283 |
stored_order = new_o
|
284 |
reply = handle_ask_action(stored_order)
|
|
|
291 |
memory.save_context({"input": ui}, {"output": reply})
|
292 |
return reply
|
293 |
|
294 |
+
# 6) Intent classification (deterministic handlers first)
|
295 |
if any(k in low for k in ["status","where is my order","check status"]):
|
296 |
intent = "status"
|
297 |
elif any(k in low for k in ["how long","eta","delivery time"]):
|
|
|
309 |
else:
|
310 |
intent = "fallback"
|
311 |
|
312 |
+
# 7) Handle intents that need an order number
|
313 |
if intent in ("status","eta","track","link","cancel"):
|
314 |
if not stored_order:
|
315 |
pending_intent = intent
|
316 |
reply = "Sureβwhatβs your order number (e.g., #12345)?"
|
317 |
else:
|
318 |
+
fn = {
|
319 |
+
"status": handle_status,
|
320 |
+
"eta": handle_eta,
|
321 |
+
"track": handle_track,
|
322 |
+
"link": handle_link,
|
323 |
+
"cancel": handle_cancel,
|
324 |
+
}[intent]
|
325 |
reply = fn(stored_order)
|
326 |
memory.save_context({"input": ui}, {"output": reply})
|
327 |
return reply
|
328 |
|
329 |
+
# 8) Policy intents (no order needed)
|
330 |
if intent == "warranty_policy":
|
331 |
reply = handle_warranty_policy()
|
332 |
memory.save_context({"input": ui}, {"output": reply})
|
|
|
337 |
memory.save_context({"input": ui}, {"output": reply})
|
338 |
return reply
|
339 |
|
340 |
+
# 9) LLM fallback (still on-topic) + post-check
|
341 |
reply = _generate_reply(ui)
|
342 |
+
if is_sexual_or_toxic(reply):
|
343 |
+
reply = REFUSAL
|
344 |
memory.save_context({"input": ui}, {"output": reply})
|
345 |
return reply
|