import chromadb import os import gradio as gr import json from huggingface_hub import InferenceClient import gspread from oauth2client.service_account import ServiceAccountCredentials from datetime import datetime from google.oauth2 import service_account # Google Sheets setup scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"] key1 = os.getenv("key1") json_data={ "type": "service_account", "project_id": "nestolechatbot", "private_key_id": key1, "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvwIBADANBgkqhkiG9w0BAQEFAASCBKkwggSlAgEAAoIBAQCg2u3D6CP9F7gD\nRsBQFvGh01gTnhzKBKpYlgUHMERezKOIXTPPNqHPONBMZN89RlFSyx4V+8rqqlCa\n7yMIMu3iHmbJuD/SkbeO1CKP5l8FuQmrNqgJZc9kxGZaAnhUrh+6JszvXoC1/Wfo\n06D0sh775VBe+H5FNKTF0XIAuLt7qp4VkiMdZGDCNIcUELQKZTChDDF2T8BLC/O0\nSzt4N76oer2jSNgr6XwSOx4HbNpwhvcf5uZokbxCUbRWXYfIxuUehzY7EhMbj5JU\nTDB9Kndzu468/qfqR3KrKPgjjH2vbP4bIcEjeMxA+VPW17hSg/imLUAGRj3uta3L\npOUyZ613AgMBAAECggEAC14dcnxb2r2L4BNmcOKGNgkBDvXcE/zLaxJDDbSACHEO\n14q6qBi0y7e4pMV2L1biVWcMW8JdH0NlCeX/hEtRG2tJmVTfkcqBfeMJBEFkErv2\nbnag3nUm+HiWwSKujVF25YlrbzkvAG2Fo+Mc214hKW0VxnhqOArV4DMCiwGDImSa\nMzUw4sga+g7iu4XoloQfyMsirsFhhba8eGgzPxVTeJjt1Iyhd0vrZXHkx9de23Hc\nUFVgnBI8gfv2RZhRHlZc0SobUvizEp3oyJECtL8zZkFCqpIqxKMPCljTqxQK8NfU\n97sbvt3fApXRi0Gz/X61FoW6mubRov6UQKqWG8QxIQKBgQDNmZR+o7ToKNOFO7Gb\nwxSR/NfZNun0rRdWe8AEcpJafWaVUmT17G9ZarlrwtVaXxh1AO2LF04JpYNT28AO\n9U1W+Y4e8Q7pKwGqdweLfuDihsx6kgUoEVX8FC6TO+qRZoN7PPwO3SipZPrz1Usd\nt3MhScrYfRgsB1829KcINtFmoQKBgQDISWTOPHFURnndQlLDPoPCRRU6GhWbBrZk\nuSf9fn94dTvgKEs3kR9kmnIt/CzIkdkW2gmHA50LENraxNCr1cwgJfje2bHouhVG\nxUNbr6pw1ZJqtUdOVUNliwTI5m61/BglHsIKDPXMVLF0XshCGgS7Uw2inb73ve0E\nGxHwpARVFwKBgQCUFh6i6H8RCPbxbAGNU4GpdRhzV95DYbkBjbjMe0l27APLYcFe\ncKHzIa/UMk1B/mS7QaPXHz4SLKje6dT38S93ieAX4UEAKP3WLk285/JKtxTo4+va\n5EGug0rYubtGZzQku9RBUIJNIHKw1dx41v2R6Hi2XcPfUp/+EVGN1Q4WgQKBgQCY\nKyrrhgCUhvcPo9Q9gsGYV+RIwIipv+/TltlLP1CZtHhJVlPPY/L1/GHDjlR4Dldh\nhUa3zYcDYUrl66Ke61CrHC55IeyJZNfFbRpADrbwA1O6vv/uA9mwzG5WNLzohx/R\nFA1YlYAqPi6Uu25qylnN+MvjQPZWQ3ZQKED5E6Q3AQKBgQCD3otki/odBpqCxFHQ\nT7lkjDLbprDWZAOzDP95yI6pWlBqMgyEHFbtqVeMHCL5I2nAZl8lFJm5Z/0xb5CJ\nyLWChBnfpgdu2QzEkugF50n6widB73xQVmu2bE+uOeq0O6+aimmh6S4H8+5peVUR\nNSpeJscWS3XTT3wXgbHil7rzIg==\n-----END PRIVATE KEY-----\n", "client_email": "nestoleservice@nestolechatbot.iam.gserviceaccount.com", "client_id": "107457262210035412036", "auth_uri": "https://accounts.google.com/o/oauth2/auth", "token_uri": "https://oauth2.googleapis.com/token", "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/nestoleservice%40nestolechatbot.iam.gserviceaccount.com", "universe_domain": "googleapis.com" } creds = service_account.Credentials.from_service_account_info(json_data, scopes=scope) #creds = ServiceAccountCredentials.from_json_keyfile_name('/home/user/app/chromaold/nestolechatbot-5fe2aa26cb52.json', scope) client = gspread.authorize(creds) sheet = client.open("nestolechatbot").sheet1 # Open the sheet def save_to_sheet(date,name, message): # Write user input to the Google Sheet sheet.append_row([date,name, message]) return f"Thanks {name}, your message has been saved!" path='/Users/thiloid/Desktop/LSKI/ole_nest/Chatbot/LLM/chromaTS' if(os.path.exists(path)==False): path="/home/user/app/chromaTS" print(path) #path='chromaTS' #settings = Settings(persist_directory=storage_path) #client = chromadb.Client(settings=settings) client = chromadb.PersistentClient(path=path) print(client.heartbeat()) print(client.get_version()) print(client.list_collections()) from chromadb.utils import embedding_functions default_ef = embedding_functions.DefaultEmbeddingFunction() sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")#"VAGOsolutions/SauerkrautLM-Mixtral-8x7B-Instruct") #instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda") #print(str(client.list_collections())) collection = client.get_collection(name="chromaTS", embedding_function=sentence_transformer_ef) client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") def format_prompt(message, history): prompt = "" #"" #for user_prompt, bot_response in history: # prompt += f"[INST] {user_prompt} [/INST]" # prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def response( prompt, history,temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) addon="" results=collection.query( query_texts=[prompt], n_results=60, #where={"source": "google-docs"} #where_document={"$contains":"search_string"} ) #print("REsults") #print(results) #print("_____") dists=["
(relevance: "+str(round((1-d)*100)/100)+";" for d in results['distances'][0]] #sources=["source: "+s["source"]+")" for s in results['metadatas'][0]] results=results['documents'][0] print("TEst") print(results) print("_____") combination = zip(results,dists) combination = [' '.join(triplets) for triplets in combination] #print(str(prompt)+"\n\n"+str(combination)) if(len(results)>1): addon=" Bitte berücksichtige bei deiner Antwort ausschießlich folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n"+"\n".join(results) system="Du bist ein deutschsprachiges KI-basiertes Studienberater Assistenzsystem, das zu jedem Anliegen möglichst geeignete Studieninformationen empfiehlt."+addon+"\n\nUser-Anliegen:" formatted_prompt = format_prompt(system+"\n"+prompt,history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output #output=output+"\n\n
Sources
" # Get current date and time now = str(datetime.now()) save_to_sheet(now,prompt, output) yield output gr.ChatInterface(response, chatbot=gr.Chatbot(value=[[None,"Herzlich willkommen! Ich bin Chätti ein KI-basiertes Studienassistenzsystem, das für jede Anfrage die am besten Studieninformationen empfiehlt.
Erzähle mir, was du gerne tust!"]],render_markdown=True),title="German Studyhelper Chätti").queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864) print("Interface up and running!")