File size: 6,235 Bytes
c02b4bf 6113980 b26b0a3 1c581ef c02b4bf 6113980 07026cb f06025d 138851d 07026cb 138851d a880370 07026cb 2742bc2 02412d9 6113980 1c581ef 6113980 1c581ef 6113980 d3ae86a 1c581ef c02b4bf d3ae86a c02b4bf 1c581ef c02b4bf 1c581ef c02b4bf 1c581ef c02b4bf 1c581ef c02b4bf 1c581ef b518cbb 7502cc2 b518cbb c02b4bf 1c581ef 4d9ef07 cfbc154 b56ec7e c02b4bf 1c581ef c02b4bf 1c581ef c02b4bf 1c581ef c02b4bf 4dfdae4 1c581ef c02b4bf 4d9ef07 c02b4bf 4d9ef07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import os
import gradio as gr
import json
from huggingface_hub import InferenceClient
import gspread
from google.oauth2 import service_account
from datetime import datetime
import chromadb
# Google Sheets setup
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
key1 = os.getenv("key1")
key2 = os.getenv("key2")
key3 = os.getenv("key3")
key4 = os.getenv("key4")
key5 = os.getenv("key5")
key6 = os.getenv("key6")
key7 = os.getenv("key7")
key8 = os.getenv("key8")
key9 = os.getenv("key9")
key10 = os.getenv("key10")
key11 = os.getenv("key11")
key12 = os.getenv("key12")
key13 = os.getenv("key13")
key14 = os.getenv("key14")
key15 = os.getenv("key15")
key16 = os.getenv("key16")
key17 = os.getenv("key17")
key18 = os.getenv("key18")
key19 = os.getenv("key19")
key20 = os.getenv("key20")
key21 = os.getenv("key21")
key22 = os.getenv("key22")
key23 = os.getenv("key23")
key24 = os.getenv("key24")
key25 = os.getenv("key25")
key26 = os.getenv("key26")
key27 = os.getenv("key27")
key28 = os.getenv("key28")
pkey="-----BEGIN PRIVATE KEY-----\n"+key2+"\n"+key3+"\n"+ key4+"\n"+key5+"\n"+ key6+"\n"+key7+"\n"+key8+"\n"+key9+"\n"+key10+"\n"+key11+"\n"+key12+"\n"+key13+"\n"+key14+"\n"+key15+"\n"+key16+"\n"+key17+"\n"+key18+"\n"+key19+"\n"+key20+"\n"+key21+"\n"+key22+"\n"+key24+"\n"+key25+"\n"+key26+"\n"+key27+"\n"+key28+"\n-----END PRIVATE KEY-----\n"
json_data={
"type": "service_account",
"project_id": "nestolechatbot",
"private_key_id": key1,
"private_key": pkey,
"client_email": "[email protected]",
"client_email": "[email protected]",
"client_id": "107457262210035412036",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/nestoleservice%40nestolechatbot.iam.gserviceaccount.com",
"universe_domain": "googleapis.com"
}
creds = service_account.Credentials.from_service_account_info(json_data, scopes=scope)
client = gspread.authorize(creds)
sheet = client.open("nestolechatbot").sheet1 # Open the sheet
def save_to_sheet(date, name, message):
# Write user input to the Google Sheet
sheet.append_row([date, name, message])
return f"Thanks {name}, your message has been saved!"
path='/Users/thiloid/Desktop/LSKI/ole_nest/Chatbot/LLM/chromaTS'
if not os.path.exists(path):
path = "/home/user/app/chromaTS"
print(path)
client = chromadb.PersistentClient(path=path)
print(client.heartbeat())
print(client.get_version())
print(client.list_collections())
from chromadb.utils import embedding_functions
default_ef = embedding_functions.DefaultEmbeddingFunction()
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
collection = client.get_collection(name="chromaTS", embedding_function=sentence_transformer_ef)
inference_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# Global variable to store the URL
global_url = ""
def format_prompt(message, history):
print("HISTORY")
print(history)
prompt = ""
if history:
user_prompt, bot_response = history[-1]
prompt += f"[INST] {user_prompt} [/INST] {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
print("Final P")
print(prompt)
return prompt
def response(prompt, history, temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0):
global_url = "" # Initialize URL variable
# JavaScript code to extract URL from the browser
js_code = """
<script>
function extractUrl() {
return window.location.href;
}
</script>
"""
# Extract URL using JavaScript
url_script = '<script>var url = extractUrl(); document.getElementById("url").innerText = url;</script>'
url_extracted = "<div id='url'></div>" # Placeholder for URL extraction
print(f"Working with URL: {url_extracted}")
headers = request.headers
print(headers)
temperature = float(temperature)
if temperature < 1e-2: temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
search_prompt = format_prompt(prompt, history)
results = collection.query(
query_texts=[search_prompt],
n_results=60,
)
dists = ["<br><small>(relevance: " + str(round((1-d)*100)/100) + ";" for d in results['distances'][0]]
results = results['documents'][0]
combination = zip(results, dists)
combination = [' '.join(triplets) for triplets in combination]
if len(results) > 1:
addon = "Bitte berücksichtige bei deiner Antwort ausschießlich folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n" + "\n".join(results)
system = "Du bist ein deutschsprachiges KI-basiertes Studienberater Assistenzsystem, das zu jedem Anliegen möglichst geeignete Studieninformationen empfiehlt." + addon + "\n\nUser-Anliegen:"
formatted_prompt = format_prompt(system + "\n" + prompt, history)
stream = inference_client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
now = str(datetime.now())
save_to_sheet(now, prompt, output)
yield output
gr.ChatInterface(
response,
chatbot=gr.Chatbot(value=[[None, "Herzlich willkommen! Ich bin Chätti ein KI-basiertes Studienassistenzsystem, das für jede Anfrage die am besten Studieninformationen empfiehlt.<br>Erzähle mir, was du gerne tust!"]], render_markdown=True),
title="German Studyhelper Chätti"
).queue().launch(share=True)
print("Interface up and running!") |