File size: 6,941 Bytes
c02b4bf 6113980 570c651 b26b0a3 c02b4bf 7422042 6113980 07026cb f06025d 138851d 07026cb 138851d a880370 07026cb 2742bc2 02412d9 6113980 d3ae86a c02b4bf d3ae86a c02b4bf 7502cc2 ab0c31c 43f3e1f c02b4bf 7422042 9dd36a0 ab0c31c c02b4bf 43f3e1f c02b4bf 896ddda c02b4bf 896ddda cfc7235 c02b4bf 55b6d8d c02b4bf 896ddda c02b4bf 570c651 4dfdae4 570c651 c02b4bf 6c4b824 c02b4bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import chromadb
import os
import gradio as gr
import json
from huggingface_hub import InferenceClient
import gspread
from oauth2client.service_account import ServiceAccountCredentials
from datetime import datetime
from google.oauth2 import service_account
import socket
def get_local_ip():
"""Get the local IP address."""
hostname = socket.gethostname()
local_ip = socket.gethostbyname(hostname)
print("IP______________________")
print(local_ip)
return local_ip
# Google Sheets setup
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
key1 = os.getenv("key1")
key2 = os.getenv("key2")
key3 = os.getenv("key3")
key4 = os.getenv("key4")
key5 = os.getenv("key5")
key6 = os.getenv("key6")
key7 = os.getenv("key7")
key8 = os.getenv("key8")
key9 = os.getenv("key9")
key10 = os.getenv("key10")
key11 = os.getenv("key11")
key12 = os.getenv("key12")
key13 = os.getenv("key13")
key14 = os.getenv("key14")
key15 = os.getenv("key15")
key16 = os.getenv("key16")
key17 = os.getenv("key17")
key18 = os.getenv("key18")
key19 = os.getenv("key19")
key20 = os.getenv("key20")
key21 = os.getenv("key21")
key22 = os.getenv("key22")
key23 = os.getenv("key23")
key24 = os.getenv("key24")
key25 = os.getenv("key25")
key26 = os.getenv("key26")
key27 = os.getenv("key27")
key28 = os.getenv("key28")
pkey="-----BEGIN PRIVATE KEY-----\n"+key2+"\n"+key3+"\n"+ key4+"\n"+key5+"\n"+ key6+"\n"+key7+"\n"+key8+"\n"+key9+"\n"+key10+"\n"+key11+"\n"+key12+"\n"+key13+"\n"+key14+"\n"+key15+"\n"+key16+"\n"+key17+"\n"+key18+"\n"+key19+"\n"+key20+"\n"+key21+"\n"+key22+"\n"+key24+"\n"+key25+"\n"+key26+"\n"+key27+"\n"+key28+"\n-----END PRIVATE KEY-----\n"
json_data={
"type": "service_account",
"project_id": "nestolechatbot",
"private_key_id": key1,
"private_key": pkey,
"client_email": "nestoleservice@nestolechatbot.iam.gserviceaccount.com",
"client_email": "nestoleservice@nestolechatbot.iam.gserviceaccount.com",
"client_id": "107457262210035412036",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/nestoleservice%40nestolechatbot.iam.gserviceaccount.com",
"universe_domain": "googleapis.com"
}
creds = service_account.Credentials.from_service_account_info(json_data, scopes=scope)
#creds = ServiceAccountCredentials.from_json_keyfile_name('/home/user/app/chromaold/nestolechatbot-5fe2aa26cb52.json', scope)
client = gspread.authorize(creds)
sheet = client.open("nestolechatbot").sheet1 # Open the sheet
def save_to_sheet(date,name, message):
# Write user input to the Google Sheet
sheet.append_row([date,name, message])
return f"Thanks {name}, your message has been saved!"
path='/Users/thiloid/Desktop/LSKI/ole_nest/Chatbot/LLM/chromaTS'
if(os.path.exists(path)==False): path="/home/user/app/chromaTS"
print(path)
#path='chromaTS'
#settings = Settings(persist_directory=storage_path)
#client = chromadb.Client(settings=settings)
client = chromadb.PersistentClient(path=path)
print(client.heartbeat())
print(client.get_version())
print(client.list_collections())
from chromadb.utils import embedding_functions
default_ef = embedding_functions.DefaultEmbeddingFunction()
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")#"VAGOsolutions/SauerkrautLM-Mixtral-8x7B-Instruct")
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
#print(str(client.list_collections()))
collection = client.get_collection(name="chromaTS", embedding_function=sentence_transformer_ef)
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def format_prompt(message, history):
print("HISTORY")
print(history)
prompt = "" #"<s>"
c=1
for user_prompt, bot_response in history:
if c<2:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
c=c+1
prompt += f"[INST] {message} [/INST]"
print("Final P")
print(prompt)
return prompt
def response(
prompt, history,temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2: temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
search_prompt = format_prompt(prompt,history)
results=collection.query(
query_texts=[search_prompt],
n_results=60,
#where={"source": "google-docs"}
#where_document={"$contains":"search_string"}
)
#print("REsults")
#print(results)
#print("_____")
dists=["<br><small>(relevance: "+str(round((1-d)*100)/100)+";" for d in results['distances'][0]]
#sources=["source: "+s["source"]+")</small>" for s in results['metadatas'][0]]
results=results['documents'][0]
#print("TEst")
#print(results)
#print("_____")
combination = zip(results,dists)
combination = [' '.join(triplets) for triplets in combination]
#print(str(prompt)+"\n\n"+str(combination))
if(len(results)>1):
addon="Bitte berücksichtige bei deiner Antwort ausschießlich folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n"+"\n".join(results)
system="Du bist ein deutschsprachiges KI-basiertes Studienberater Assistenzsystem, das zu jedem Anliegen möglichst geeignete Studieninformationen empfiehlt."+addon+"\n\nUser-Anliegen:"
formatted_prompt = format_prompt(system+"\n"+prompt,history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
#output=output+"\n\n<br><details open><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>"
# Get current date and time
now = str(datetime.now())
save_to_sheet(now,prompt, output)
yield output
gr.ChatInterface(response, chatbot=gr.Chatbot(value=[[None,"Herzlich willkommen! Ich bin Chätti ein KI-basiertes Studienassistenzsystem, das für jede Anfrage die am besten Studieninformationen empfiehlt.<br>Erzähle mir, was du gerne tust!"]],render_markdown=True),title="German Studyhelper Chätti").queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864)
print("Interface up and running!")
|