import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('modelo50.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Bleach - Qual potencial de guerra? - RestNet50" description = "Reconhecer os 5 Potenciais (Bleach)" examples = ['Aizen.jpg', 'Ichigo.jpg', 'Zaraki.jpg','Ichibe.jpg', 'Urahara.jpg'] interpretation ='default' enable_queue = True gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3), title=title, description=description, examples=examples, interpretation=interpretation, enable_queue=enable_queue).launch()