Spaces:
Running
on
Zero
Running
on
Zero
Update app.py (#4)
Browse files- Update app.py (1e80830cddc8850dba95d28a1c6843c87745ddf9)
Co-authored-by: Tuan <[email protected]>
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy
|
@@ -5,38 +6,39 @@ import os
|
|
5 |
import random
|
6 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
7 |
from basicsr.utils.download_util import load_file_from_url
|
|
|
8 |
from realesrgan import RealESRGANer
|
9 |
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
10 |
-
|
11 |
-
import spaces
|
12 |
|
13 |
last_file = None
|
14 |
img_mode = "RGBA"
|
15 |
|
16 |
@spaces.GPU
|
17 |
def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
18 |
-
"""Real-ESRGAN function to restore (and upscale) images.
|
|
|
19 |
if not img:
|
20 |
return
|
21 |
|
22 |
# Define model parameters
|
23 |
-
if model_name == 'RealESRGAN_x4plus':
|
24 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
25 |
netscale = 4
|
26 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
|
27 |
-
elif model_name == 'RealESRNet_x4plus':
|
28 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
29 |
netscale = 4
|
30 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
|
31 |
-
elif model_name == 'RealESRGAN_x4plus_anime_6B':
|
32 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
33 |
netscale = 4
|
34 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
|
35 |
-
elif model_name == 'RealESRGAN_x2plus':
|
36 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
37 |
netscale = 2
|
38 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
|
39 |
-
elif model_name == 'realesr-general-x4v3':
|
40 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
41 |
netscale = 4
|
42 |
file_url = [
|
@@ -44,19 +46,23 @@ def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
|
44 |
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
|
45 |
]
|
46 |
|
|
|
47 |
model_path = os.path.join('weights', model_name + '.pth')
|
48 |
if not os.path.isfile(model_path):
|
49 |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
50 |
for url in file_url:
|
|
|
51 |
model_path = load_file_from_url(
|
52 |
url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
|
53 |
|
|
|
54 |
dni_weight = None
|
55 |
if model_name == 'realesr-general-x4v3' and denoise_strength != 1:
|
56 |
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
|
57 |
model_path = [model_path, wdn_model_path]
|
58 |
dni_weight = [denoise_strength, 1 - denoise_strength]
|
59 |
|
|
|
60 |
upsampler = RealESRGANer(
|
61 |
scale=netscale,
|
62 |
model_path=model_path,
|
@@ -69,6 +75,7 @@ def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
|
69 |
gpu_id=None
|
70 |
)
|
71 |
|
|
|
72 |
if face_enhance:
|
73 |
from gfpgan import GFPGANer
|
74 |
face_enhancer = GFPGANer(
|
@@ -78,9 +85,11 @@ def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
|
78 |
channel_multiplier=2,
|
79 |
bg_upsampler=upsampler)
|
80 |
|
|
|
81 |
cv_img = numpy.array(img)
|
82 |
img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
|
83 |
|
|
|
84 |
try:
|
85 |
if face_enhance:
|
86 |
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
@@ -90,29 +99,49 @@ def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
|
90 |
print('Error', error)
|
91 |
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
|
92 |
else:
|
93 |
-
|
|
|
|
|
|
|
|
|
94 |
|
95 |
out_filename = f"output_{rnd_string(8)}.{extension}"
|
96 |
cv2.imwrite(out_filename, output)
|
97 |
global last_file
|
98 |
last_file = out_filename
|
|
|
99 |
|
100 |
-
output_img = cv2.cvtColor(output, cv2.COLOR_BGRA2RGBA) if img_mode == "RGBA" else output
|
101 |
-
return out_filename, image_properties(output_img)
|
102 |
|
103 |
def rnd_string(x):
|
|
|
|
|
104 |
characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
|
105 |
-
|
|
|
|
|
106 |
|
107 |
def reset():
|
|
|
|
|
|
|
108 |
global last_file
|
109 |
if last_file:
|
110 |
print(f"Deleting {last_file} ...")
|
111 |
os.remove(last_file)
|
112 |
last_file = None
|
113 |
-
return gr.update(value=None), gr.update(value=None)
|
|
|
114 |
|
115 |
def has_transparency(img):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
if img.info.get("transparency", None) is not None:
|
117 |
return True
|
118 |
if img.mode == "P":
|
@@ -126,70 +155,68 @@ def has_transparency(img):
|
|
126 |
return True
|
127 |
return False
|
128 |
|
|
|
129 |
def image_properties(img):
|
130 |
"""Returns the dimensions (width and height) and color mode of the input image and
|
131 |
also sets the global img_mode variable to be used by the realesrgan function
|
132 |
"""
|
133 |
global img_mode
|
134 |
-
if img
|
135 |
-
return "No image data available."
|
136 |
-
|
137 |
-
if isinstance(img, numpy.ndarray): # Handle NumPy array case
|
138 |
-
height, width = img.shape[:2]
|
139 |
-
channels = img.shape[2] if len(img.shape) > 2 else 1
|
140 |
-
img_mode = "RGBA" if channels == 4 else "RGB" if channels == 3 else "Grayscale"
|
141 |
-
return f"Resolution: Width: {width}, Height: {height} | Color Mode: {img_mode}"
|
142 |
-
|
143 |
-
if hasattr(img, "info") and hasattr(img, "mode") and hasattr(img, "size"): # Handle PIL images
|
144 |
if has_transparency(img):
|
145 |
img_mode = "RGBA"
|
146 |
else:
|
147 |
img_mode = "RGB"
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
|
152 |
def main():
|
153 |
-
|
|
|
154 |
|
155 |
gr.Markdown(
|
156 |
-
"""
|
157 |
"""
|
158 |
)
|
|
|
159 |
with gr.Accordion("Upscaling option"):
|
160 |
with gr.Row():
|
161 |
-
model_name = gr.Dropdown(label="
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
168 |
with gr.Row():
|
169 |
with gr.Group():
|
170 |
-
input_image = gr.Image(label="Input Image", type="pil")
|
171 |
-
|
172 |
-
|
173 |
-
with gr.Group():
|
174 |
-
output_image = gr.Image(label="Output Image")
|
175 |
-
output_properties = gr.Textbox(label="Output Image Properties", interactive=False)
|
176 |
-
|
177 |
with gr.Row():
|
178 |
-
reset_btn = gr.Button("
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
186 |
|
187 |
gr.Markdown(
|
188 |
-
"""
|
189 |
"""
|
190 |
)
|
191 |
|
192 |
-
|
|
|
193 |
|
194 |
if __name__ == "__main__":
|
195 |
-
main()
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
import cv2
|
4 |
import numpy
|
|
|
6 |
import random
|
7 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
8 |
from basicsr.utils.download_util import load_file_from_url
|
9 |
+
|
10 |
from realesrgan import RealESRGANer
|
11 |
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
12 |
+
|
|
|
13 |
|
14 |
last_file = None
|
15 |
img_mode = "RGBA"
|
16 |
|
17 |
@spaces.GPU
|
18 |
def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
19 |
+
"""Real-ESRGAN function to restore (and upscale) images.
|
20 |
+
"""
|
21 |
if not img:
|
22 |
return
|
23 |
|
24 |
# Define model parameters
|
25 |
+
if model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model
|
26 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
27 |
netscale = 4
|
28 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
|
29 |
+
elif model_name == 'RealESRNet_x4plus': # x4 RRDBNet model
|
30 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
31 |
netscale = 4
|
32 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
|
33 |
+
elif model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks
|
34 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
35 |
netscale = 4
|
36 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
|
37 |
+
elif model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model
|
38 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
39 |
netscale = 2
|
40 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
|
41 |
+
elif model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size)
|
42 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
43 |
netscale = 4
|
44 |
file_url = [
|
|
|
46 |
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
|
47 |
]
|
48 |
|
49 |
+
# Determine model paths
|
50 |
model_path = os.path.join('weights', model_name + '.pth')
|
51 |
if not os.path.isfile(model_path):
|
52 |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
53 |
for url in file_url:
|
54 |
+
# model_path will be updated
|
55 |
model_path = load_file_from_url(
|
56 |
url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
|
57 |
|
58 |
+
# Use dni to control the denoise strength
|
59 |
dni_weight = None
|
60 |
if model_name == 'realesr-general-x4v3' and denoise_strength != 1:
|
61 |
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
|
62 |
model_path = [model_path, wdn_model_path]
|
63 |
dni_weight = [denoise_strength, 1 - denoise_strength]
|
64 |
|
65 |
+
# Restorer Class
|
66 |
upsampler = RealESRGANer(
|
67 |
scale=netscale,
|
68 |
model_path=model_path,
|
|
|
75 |
gpu_id=None
|
76 |
)
|
77 |
|
78 |
+
# Use GFPGAN for face enhancement
|
79 |
if face_enhance:
|
80 |
from gfpgan import GFPGANer
|
81 |
face_enhancer = GFPGANer(
|
|
|
85 |
channel_multiplier=2,
|
86 |
bg_upsampler=upsampler)
|
87 |
|
88 |
+
# Convert the input PIL image to cv2 image, so that it can be processed by realesrgan
|
89 |
cv_img = numpy.array(img)
|
90 |
img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
|
91 |
|
92 |
+
# Apply restoration
|
93 |
try:
|
94 |
if face_enhance:
|
95 |
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
|
|
99 |
print('Error', error)
|
100 |
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
|
101 |
else:
|
102 |
+
# Save restored image and return it to the output Image component
|
103 |
+
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
104 |
+
extension = 'png'
|
105 |
+
else:
|
106 |
+
extension = 'jpg'
|
107 |
|
108 |
out_filename = f"output_{rnd_string(8)}.{extension}"
|
109 |
cv2.imwrite(out_filename, output)
|
110 |
global last_file
|
111 |
last_file = out_filename
|
112 |
+
return out_filename
|
113 |
|
|
|
|
|
114 |
|
115 |
def rnd_string(x):
|
116 |
+
"""Returns a string of 'x' random characters
|
117 |
+
"""
|
118 |
characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
|
119 |
+
result = "".join((random.choice(characters)) for i in range(x))
|
120 |
+
return result
|
121 |
+
|
122 |
|
123 |
def reset():
|
124 |
+
"""Resets the Image components of the Gradio interface and deletes
|
125 |
+
the last processed image
|
126 |
+
"""
|
127 |
global last_file
|
128 |
if last_file:
|
129 |
print(f"Deleting {last_file} ...")
|
130 |
os.remove(last_file)
|
131 |
last_file = None
|
132 |
+
return gr.update(value=None), gr.update(value=None)
|
133 |
+
|
134 |
|
135 |
def has_transparency(img):
|
136 |
+
"""This function works by first checking to see if a "transparency" property is defined
|
137 |
+
in the image's info -- if so, we return "True". Then, if the image is using indexed colors
|
138 |
+
(such as in GIFs), it gets the index of the transparent color in the palette
|
139 |
+
(img.info.get("transparency", -1)) and checks if it's used anywhere in the canvas
|
140 |
+
(img.getcolors()). If the image is in RGBA mode, then presumably it has transparency in
|
141 |
+
it, but it double-checks by getting the minimum and maximum values of every color channel
|
142 |
+
(img.getextrema()), and checks if the alpha channel's smallest value falls below 255.
|
143 |
+
https://stackoverflow.com/questions/43864101/python-pil-check-if-image-is-transparent
|
144 |
+
"""
|
145 |
if img.info.get("transparency", None) is not None:
|
146 |
return True
|
147 |
if img.mode == "P":
|
|
|
155 |
return True
|
156 |
return False
|
157 |
|
158 |
+
|
159 |
def image_properties(img):
|
160 |
"""Returns the dimensions (width and height) and color mode of the input image and
|
161 |
also sets the global img_mode variable to be used by the realesrgan function
|
162 |
"""
|
163 |
global img_mode
|
164 |
+
if img:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
if has_transparency(img):
|
166 |
img_mode = "RGBA"
|
167 |
else:
|
168 |
img_mode = "RGB"
|
169 |
+
properties = f"Resolution: Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}"
|
170 |
+
return properties
|
171 |
+
|
172 |
|
173 |
def main():
|
174 |
+
# Gradio Interface
|
175 |
+
with gr.Blocks(title="Real-ESRGAN Gradio Demo", theme="ParityError/Interstellar") as demo:
|
176 |
|
177 |
gr.Markdown(
|
178 |
+
""" Image Upscaler
|
179 |
"""
|
180 |
)
|
181 |
+
|
182 |
with gr.Accordion("Upscaling option"):
|
183 |
with gr.Row():
|
184 |
+
model_name = gr.Dropdown(label="Upscaler model",
|
185 |
+
choices=["RealESRGAN_x4plus", "RealESRNet_x4plus", "RealESRGAN_x4plus_anime_6B",
|
186 |
+
"RealESRGAN_x2plus", "realesr-general-x4v3"],
|
187 |
+
value="RealESRGAN_x4plus_anime_6B", show_label=True)
|
188 |
+
denoise_strength = gr.Slider(label="Denoise Strength",
|
189 |
+
minimum=0, maximum=1, step=0.1, value=0.5)
|
190 |
+
outscale = gr.Slider(label="Resolution upscale",
|
191 |
+
minimum=1, maximum=6, step=1, value=4, show_label=True)
|
192 |
+
face_enhance = gr.Checkbox(label="Face Enhancement (GFPGAN)",
|
193 |
+
)
|
194 |
+
|
195 |
with gr.Row():
|
196 |
with gr.Group():
|
197 |
+
input_image = gr.Image(label="Input Image", type="pil", image_mode="RGBA")
|
198 |
+
input_image_properties = gr.Textbox(label="Image Properties", max_lines=1)
|
199 |
+
output_image = gr.Image(label="Output Image", image_mode="RGBA")
|
|
|
|
|
|
|
|
|
200 |
with gr.Row():
|
201 |
+
reset_btn = gr.Button("Remove images")
|
202 |
+
restore_btn = gr.Button("Upscale")
|
203 |
+
|
204 |
+
# Event listeners:
|
205 |
+
input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties)
|
206 |
+
restore_btn.click(fn=realesrgan,
|
207 |
+
inputs=[input_image, model_name, denoise_strength, face_enhance, outscale],
|
208 |
+
outputs=output_image)
|
209 |
+
reset_btn.click(fn=reset, inputs=[], outputs=[output_image, input_image])
|
210 |
+
# reset_btn.click(None, inputs=[], outputs=[input_image], _js="() => (null)\n")
|
211 |
+
# Undocumented method to clear a component's value using Javascript
|
212 |
|
213 |
gr.Markdown(
|
214 |
+
"""
|
215 |
"""
|
216 |
)
|
217 |
|
218 |
+
demo.launch()
|
219 |
+
|
220 |
|
221 |
if __name__ == "__main__":
|
222 |
+
main()
|