Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,116 Bytes
d69ad9e 0824ec4 886cd92 d69ad9e 886cd92 d69ad9e 72ecfae d69ad9e 72ecfae d69ad9e 72ecfae d69ad9e 72ecfae d69ad9e 72ecfae d69ad9e 72ecfae d69ad9e 72ecfae d69ad9e 72ecfae d69ad9e 72ecfae d69ad9e 72ecfae d69ad9e 72ecfae d69ad9e 72ecfae d69ad9e f92d97c d69ad9e 72ecfae d69ad9e 72ecfae d69ad9e 72ecfae d69ad9e f92d97c d69ad9e f92d97c d69ad9e 72ecfae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import gradio as gr
import cv2
import numpy
import os
import random
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
from torchvision.transforms.functional import rgb_to_grayscale
import spaces
last_file = None
img_mode = "RGBA"
@spaces.GPU
def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
"""Real-ESRGAN function to restore (and upscale) images."""
if not img:
return
# Define model parameters
if model_name == 'RealESRGAN_x4plus':
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
elif model_name == 'RealESRNet_x4plus':
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
elif model_name == 'RealESRGAN_x4plus_anime_6B':
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
elif model_name == 'RealESRGAN_x2plus':
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
netscale = 2
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
elif model_name == 'realesr-general-x4v3':
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
netscale = 4
file_url = [
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
]
model_path = os.path.join('weights', model_name + '.pth')
if not os.path.isfile(model_path):
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
for url in file_url:
model_path = load_file_from_url(
url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
dni_weight = None
if model_name == 'realesr-general-x4v3' and denoise_strength != 1:
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
model_path = [model_path, wdn_model_path]
dni_weight = [denoise_strength, 1 - denoise_strength]
upsampler = RealESRGANer(
scale=netscale,
model_path=model_path,
dni_weight=dni_weight,
model=model,
tile=0,
tile_pad=10,
pre_pad=10,
half=False,
gpu_id=None
)
if face_enhance:
from gfpgan import GFPGANer
face_enhancer = GFPGANer(
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
upscale=outscale,
arch='clean',
channel_multiplier=2,
bg_upsampler=upsampler)
cv_img = numpy.array(img)
img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
try:
if face_enhance:
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
else:
output, _ = upsampler.enhance(img, outscale=outscale)
except RuntimeError as error:
print('Error', error)
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
else:
extension = 'png' if img_mode == 'RGBA' else 'jpg'
out_filename = f"output_{rnd_string(8)}.{extension}"
cv2.imwrite(out_filename, output)
global last_file
last_file = out_filename
output_img = cv2.cvtColor(output, cv2.COLOR_BGRA2RGBA) if img_mode == "RGBA" else output
return out_filename, image_properties(output_img)
def rnd_string(x):
characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
return "".join((random.choice(characters)) for i in range(x))
def reset():
global last_file
if last_file:
print(f"Deleting {last_file} ...")
os.remove(last_file)
last_file = None
return gr.update(value=None), gr.update(value=None), gr.update(value=None)
def has_transparency(img):
if img.info.get("transparency", None) is not None:
return True
if img.mode == "P":
transparent = img.info.get("transparency", -1)
for _, index in img.getcolors():
if index == transparent:
return True
elif img.mode == "RGBA":
extrema = img.getextrema()
if extrema[3][0] < 255:
return True
return False
def image_properties(img):
"""Returns the dimensions (width and height) and color mode of the input image and
also sets the global img_mode variable to be used by the realesrgan function
"""
global img_mode
if img is None: # Explicitly check for None
return "No image data available."
if isinstance(img, numpy.ndarray): # Handle NumPy array case
height, width = img.shape[:2]
channels = img.shape[2] if len(img.shape) > 2 else 1
img_mode = "RGBA" if channels == 4 else "RGB" if channels == 3 else "Grayscale"
return f"Resolution: Width: {width}, Height: {height} | Color Mode: {img_mode}"
if hasattr(img, "info") and hasattr(img, "mode") and hasattr(img, "size"): # Handle PIL images
if has_transparency(img):
img_mode = "RGBA"
else:
img_mode = "RGB"
return f"Resolution: Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}"
return "Unsupported image format."
def main():
with gr.Blocks(theme=gr.themes.Default(primary_hue="pink", secondary_hue="rose"), title="Ilaria Upscaler π") as app:
gr.Markdown(
"""# <div align="center"> Ilaria Upscaler π </div>
"""
)
with gr.Accordion("Upscaling option"):
with gr.Row():
model_name = gr.Dropdown(label="Model",
choices=["RealESRGAN_x4plus", "RealESRNet_x4plus", "RealESRGAN_x4plus_anime_6B", "RealESRGAN_x2plus", "realesr-general-x4v3"],
value="RealESRGAN_x4plus")
denoise_strength = gr.Slider(label="Denoise Strength", minimum=0, maximum=1, step=0.1, value=0.5)
outscale = gr.Slider(label="Resolution Upscale", minimum=1, maximum=6, step=1, value=4)
face_enhance = gr.Checkbox(label="Face Enhancement")
with gr.Row():
with gr.Group():
input_image = gr.Image(label="Input Image", type="pil")
input_properties = gr.Textbox(label="Input Image Properties", interactive=False)
with gr.Group():
output_image = gr.Image(label="Output Image")
output_properties = gr.Textbox(label="Output Image Properties", interactive=False)
with gr.Row():
reset_btn = gr.Button("Reset")
upscale_btn = gr.Button("Upscale")
input_image.change(fn=image_properties, inputs=input_image, outputs=input_properties)
upscale_btn.click(fn=realesrgan,
inputs=[input_image, model_name, denoise_strength, face_enhance, outscale],
outputs=[output_image, output_properties])
reset_btn.click(fn=reset, inputs=[], outputs=[input_image, output_image, input_properties])
gr.Markdown(
"""Made with love by Ilaria π | Support me on [Ko-Fi](https://ko-fi.com/ilariaowo) | Using [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN).
"""
)
app.launch()
if __name__ == "__main__":
main()
|