File size: 8,116 Bytes
d69ad9e
 
 
 
 
 
 
 
 
0824ec4
886cd92
d69ad9e
 
 
 
886cd92
d69ad9e
72ecfae
d69ad9e
 
 
 
72ecfae
d69ad9e
 
 
72ecfae
d69ad9e
 
 
72ecfae
d69ad9e
 
 
72ecfae
d69ad9e
 
 
72ecfae
d69ad9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ecfae
d69ad9e
 
 
 
 
 
72ecfae
 
d69ad9e
 
 
72ecfae
d69ad9e
 
 
 
 
 
 
72ecfae
d69ad9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ecfae
 
 
 
 
 
 
 
 
 
d69ad9e
 
 
 
72ecfae
 
 
d69ad9e
 
f92d97c
d69ad9e
 
 
 
 
 
 
72ecfae
 
 
 
 
 
 
d69ad9e
 
72ecfae
 
 
 
 
 
 
d69ad9e
72ecfae
 
 
 
 
 
 
 
d69ad9e
 
f92d97c
d69ad9e
 
 
f92d97c
d69ad9e
 
72ecfae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import gradio as gr
import cv2
import numpy
import os
import random
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
from torchvision.transforms.functional import rgb_to_grayscale
import spaces

last_file = None
img_mode = "RGBA"

@spaces.GPU
def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
    """Real-ESRGAN function to restore (and upscale) images."""
    if not img:
        return

    # Define model parameters
    if model_name == 'RealESRGAN_x4plus':
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
        netscale = 4
        file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
    elif model_name == 'RealESRNet_x4plus':
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
        netscale = 4
        file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
    elif model_name == 'RealESRGAN_x4plus_anime_6B':
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
        netscale = 4
        file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
    elif model_name == 'RealESRGAN_x2plus':
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
        netscale = 2
        file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
    elif model_name == 'realesr-general-x4v3':
        model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
        netscale = 4
        file_url = [
            'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
            'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
        ]

    model_path = os.path.join('weights', model_name + '.pth')
    if not os.path.isfile(model_path):
        ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
        for url in file_url:
            model_path = load_file_from_url(
                url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)

    dni_weight = None
    if model_name == 'realesr-general-x4v3' and denoise_strength != 1:
        wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
        model_path = [model_path, wdn_model_path]
        dni_weight = [denoise_strength, 1 - denoise_strength]

    upsampler = RealESRGANer(
        scale=netscale,
        model_path=model_path,
        dni_weight=dni_weight,
        model=model,
        tile=0,
        tile_pad=10,
        pre_pad=10,
        half=False,
        gpu_id=None
    )

    if face_enhance:
        from gfpgan import GFPGANer
        face_enhancer = GFPGANer(
            model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
            upscale=outscale,
            arch='clean',
            channel_multiplier=2,
            bg_upsampler=upsampler)

    cv_img = numpy.array(img)
    img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)

    try:
        if face_enhance:
            _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
        else:
            output, _ = upsampler.enhance(img, outscale=outscale)
    except RuntimeError as error:
        print('Error', error)
        print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
    else:
        extension = 'png' if img_mode == 'RGBA' else 'jpg'

        out_filename = f"output_{rnd_string(8)}.{extension}"
        cv2.imwrite(out_filename, output)
        global last_file
        last_file = out_filename

        output_img = cv2.cvtColor(output, cv2.COLOR_BGRA2RGBA) if img_mode == "RGBA" else output
        return out_filename, image_properties(output_img)

def rnd_string(x):
    characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
    return "".join((random.choice(characters)) for i in range(x))

def reset():
    global last_file
    if last_file:
        print(f"Deleting {last_file} ...")
        os.remove(last_file)
        last_file = None
    return gr.update(value=None), gr.update(value=None), gr.update(value=None)

def has_transparency(img):
    if img.info.get("transparency", None) is not None:
        return True
    if img.mode == "P":
        transparent = img.info.get("transparency", -1)
        for _, index in img.getcolors():
            if index == transparent:
                return True
    elif img.mode == "RGBA":
        extrema = img.getextrema()
        if extrema[3][0] < 255:
            return True
    return False

def image_properties(img):
    """Returns the dimensions (width and height) and color mode of the input image and
    also sets the global img_mode variable to be used by the realesrgan function
    """
    global img_mode
    if img is None:  # Explicitly check for None
        return "No image data available."

    if isinstance(img, numpy.ndarray):  # Handle NumPy array case
        height, width = img.shape[:2]
        channels = img.shape[2] if len(img.shape) > 2 else 1
        img_mode = "RGBA" if channels == 4 else "RGB" if channels == 3 else "Grayscale"
        return f"Resolution: Width: {width}, Height: {height}  |  Color Mode: {img_mode}"
    
    if hasattr(img, "info") and hasattr(img, "mode") and hasattr(img, "size"):  # Handle PIL images
        if has_transparency(img):
            img_mode = "RGBA"
        else:
            img_mode = "RGB"
        return f"Resolution: Width: {img.size[0]}, Height: {img.size[1]}  |  Color Mode: {img_mode}"
    
    return "Unsupported image format."

def main():
    with gr.Blocks(theme=gr.themes.Default(primary_hue="pink", secondary_hue="rose"), title="Ilaria Upscaler πŸ’–") as app:

        gr.Markdown(
            """# <div align="center"> Ilaria Upscaler πŸ’– </div>  
        """
        )
        with gr.Accordion("Upscaling option"):
            with gr.Row():
                model_name = gr.Dropdown(label="Model", 
                                        choices=["RealESRGAN_x4plus", "RealESRNet_x4plus", "RealESRGAN_x4plus_anime_6B", "RealESRGAN_x2plus", "realesr-general-x4v3"], 
                                        value="RealESRGAN_x4plus")
                denoise_strength = gr.Slider(label="Denoise Strength", minimum=0, maximum=1, step=0.1, value=0.5)
                outscale = gr.Slider(label="Resolution Upscale", minimum=1, maximum=6, step=1, value=4)
                face_enhance = gr.Checkbox(label="Face Enhancement")

        with gr.Row():
            with gr.Group():
                input_image = gr.Image(label="Input Image", type="pil")
                input_properties = gr.Textbox(label="Input Image Properties", interactive=False)

            with gr.Group():
                output_image = gr.Image(label="Output Image")
                output_properties = gr.Textbox(label="Output Image Properties", interactive=False)

        with gr.Row():
            reset_btn = gr.Button("Reset")
            upscale_btn = gr.Button("Upscale")

        input_image.change(fn=image_properties, inputs=input_image, outputs=input_properties)
        upscale_btn.click(fn=realesrgan, 
                        inputs=[input_image, model_name, denoise_strength, face_enhance, outscale], 
                        outputs=[output_image, output_properties])
        reset_btn.click(fn=reset, inputs=[], outputs=[input_image, output_image, input_properties])

        gr.Markdown(
            """Made with love by Ilaria πŸ’– | Support me on [Ko-Fi](https://ko-fi.com/ilariaowo) | Using [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN).
        """
        )

    app.launch()

if __name__ == "__main__":
    main()