import gradio as gr from stability_sdk import client import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation theme = gr.themes.Monochrome( primary_hue="indigo", secondary_hue="blue", neutral_hue="slate", radius_size=gr.themes.sizes.radius_sm, font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"], ) def infer(prompt, api_key): stability_api = client.StabilityInference( key=api_key, # API Key reference. verbose=True, # Print debug messages. engine="stable-diffusion-xl-beta-v2-2-2", # Set the engine to use for generation. # Available engines: stable-diffusion-v1 stable-diffusion-v1-5 stable-diffusion-512-v2-0 stable-diffusion-768-v2-0 stable-inpainting-v1-0 stable-inpainting-512-v2-0 ) answers = stability_api.generate( prompt=prompt, seed=992446758, # If a seed is provided, the resulting generated image will be deterministic. # What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again. # Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook. steps=30, # Amount of inference steps performed on image generation. Defaults to 30. cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt. # Setting this value higher increases the strength in which it tries to match your prompt. # Defaults to 7.0 if not specified. width=512, # Generation width, defaults to 512 if not included. height=512, # Generation height, defaults to 512 if not included. samples=1, # Number of images to generate, defaults to 1 if not included. sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with. # Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers. # (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m) ) for resp in answers: for artifact in resp.artifacts: if artifact.finish_reason == generation.FILTER: warnings.warn( "Your request activated the API's safety filters and could not be processed." "Please modify the prompt and try again.") if artifact.type == generation.ARTIFACT_IMAGE: img = Image.open(io.BytesIO(artifact.binary)) return img with gr.Blocks(theme = theme) as demo: gr.Markdown("# Stable Diffusion XL") #gr.Markdown('

For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. Duplicate Space

') api_key_input = gr.Textbox(type = "password", label = "Enter your StabilityAI API key here") text = gr.Textbox(label="Enter your prompt", show_label=True, max_lines=1, placeholder="Enter your prompt", elem_id="prompt-text-input", ).style( border=(True, False, True, True), rounded=(True, False, False, True), container=False, ) btn = gr.Button("Generate image").style( margin=False, rounded=(False, True, True, False), full_width=False, ) gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ).style(grid=[2], height="auto") btn.click(infer, inputs=[text, api_key_input], outputs=[gallery]) demo.launch()