import gradio as gr from datasets import load_dataset from sentence_transformers import SentenceTransformer import faiss import numpy as np import os from transformers import pipeline import time # --- 1. DATA LOADING AND PREPROCESSING --- print("===== Application Startup =====") start_time = time.time() # Load dataset dataset = load_dataset("corbt/all-recipes", split="train[:20000]") # Preprocessing functions def extract_title_and_ingredients(sample): extraction = sample['input'][:sample['input'].find("Directions")] return {"text_for_embedding": extraction} def extract_each_feature(sample): title = sample['input'][:sample['input'].find("\\n")] ingredients = sample['input'][sample['input'].find("Ingredients")+len("Ingredients:\\n"):sample['input'].find("Directions")].strip() directions = sample['input'][sample['input'].find("Directions")+len("Directions:\\n"):].strip() return {"title": title, "ingredients": ingredients, "directions": directions} # Apply preprocessing dataset = dataset.map(extract_title_and_ingredients) dataset = dataset.map(extract_each_feature) # --- 2. EMBEDDING AND RECOMMENDATION ENGINE --- model_name = "all-MiniLM-L6-v2" embedding_model = SentenceTransformer(f"sentence-transformers/{model_name}") # Compute embeddings print("Loading dataset and embedding model...") embeddings = embedding_model.encode(dataset['text_for_embedding'], show_progress_bar=True) embeddings = np.array(embeddings, dtype=np.float32) # Build FAISS index dimension = embeddings.shape[1] index = faiss.IndexFlatL2(dimension) index.add(embeddings) print(f"Index is ready. Total vectors in index: {index.ntotal}") # --- 3. SYNTHETIC GENERATION --- generator = pipeline('text-generation', model='gpt2') def get_recommendations_and_generate(query_ingredients, k=3): # 1. Get Recommendations query_vector = embedding_model.encode([query_ingredients]) query_vector = np.array(query_vector, dtype=np.float32) distances, indices = index.search(query_vector, k) results = [] for i, idx_numpy in enumerate(indices[0]): idx = int(idx_numpy) # FIX: Convert numpy.int64 to standard Python int recipe = { "title": dataset[idx]['title'], "ingredients": dataset[idx]['ingredients'], "directions": dataset[idx]['directions'] } results.append(recipe) # 2. Generate a new recipe idea prompt = f"Create a short, simple recipe title and a list of ingredients using: {query_ingredients}." generated_text = generator(prompt, max_length=100, num_return_sequences=1)[0]['generated_text'] # Clean up generated text to be more readable # (This is a basic cleanup, can be improved) generated_recipe_parts = generated_text.split("Ingredients:") generated_title = generated_recipe_parts[0].replace(prompt.replace(f"using: {query_ingredients}",""), "").strip() generated_ingredients = generated_recipe_parts[1].strip() if len(generated_recipe_parts) > 1 else "Could not determine ingredients." generated_recipe = { "title": generated_title, "ingredients": generated_ingredients, "directions": "This is an AI-generated idea. Directions are not provided." } return results[0], results[1], results[2], generated_recipe # --- 4. GRADIO USER INTERFACE --- def format_recipe(recipe): if not recipe or not recipe['title']: return "### No recipe found." return f"### {recipe['title']}\n**Ingredients:**\n{recipe['ingredients']}\n\n**Directions:**\n{recipe['directions']}" def recipe_wizard(ingredients): rec1, rec2, rec3, gen_rec = get_recommendations_and_generate(ingredients) return format_recipe(rec1), format_recipe(rec2), format_recipe(rec3), format_recipe(gen_rec) end_time = time.time() print(f"Models and data loaded in {end_time - start_time:.2f} seconds.") # Gradio Interface with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# 🍳 RecipeWizard AI") gr.Markdown("Enter the ingredients you have, and get recipe recommendations plus a new AI-generated idea!") with gr.Row(): ingredient_input = gr.Textbox(label="Your Ingredients", placeholder="e.g., chicken, rice, tomatoes, garlic") submit_btn = gr.Button("Get Recipes") with gr.Row(): with gr.Column(): gr.Markdown("### Recommended Recipes") output_rec1 = gr.Markdown() output_rec2 = gr.Markdown() output_rec3 = gr.Markdown() with gr.Column(): gr.Markdown("### ✨ AI-Generated Idea") output_gen = gr.Markdown() submit_btn.click( fn=recipe_wizard, inputs=ingredient_input, outputs=[output_rec1, output_rec2, output_rec3, output_gen] ) gr.Examples( examples=[ ["chicken, broccoli, cheese"], ["ground beef, potatoes, onions"], ["flour, sugar, eggs, butter"] ], inputs=ingredient_input ) demo.launch()