Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- .gitattributes +1 -0
- app.py +131 -0
- recipe_index.faiss +3 -0
- requirements.txt +8 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
recipe_index.faiss filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from datasets import load_dataset
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
import faiss
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
from transformers import pipeline
|
8 |
+
import time
|
9 |
+
|
10 |
+
# --- 1. DATA LOADING AND PREPROCESSING ---
|
11 |
+
print("===== Application Startup =====")
|
12 |
+
start_time = time.time()
|
13 |
+
|
14 |
+
# Load dataset
|
15 |
+
dataset = load_dataset("corbt/all-recipes", split="train[:20000]")
|
16 |
+
|
17 |
+
# Preprocessing functions
|
18 |
+
def extract_title_and_ingredients(sample):
|
19 |
+
extraction = sample['input'][:sample['input'].find("Directions")]
|
20 |
+
return {"text_for_embedding": extraction}
|
21 |
+
|
22 |
+
def extract_each_feature(sample):
|
23 |
+
title = sample['input'][:sample['input'].find("\\n")]
|
24 |
+
ingredients = sample['input'][sample['input'].find("Ingredients")+len("Ingredients:\\n"):sample['input'].find("Directions")].strip()
|
25 |
+
directions = sample['input'][sample['input'].find("Directions")+len("Directions:\\n"):].strip()
|
26 |
+
return {"title": title, "ingredients": ingredients, "directions": directions}
|
27 |
+
|
28 |
+
# Apply preprocessing
|
29 |
+
dataset = dataset.map(extract_title_and_ingredients)
|
30 |
+
dataset = dataset.map(extract_each_feature)
|
31 |
+
|
32 |
+
# --- 2. EMBEDDING AND RECOMMENDATION ENGINE ---
|
33 |
+
model_name = "all-MiniLM-L6-v2"
|
34 |
+
embedding_model = SentenceTransformer(f"sentence-transformers/{model_name}")
|
35 |
+
|
36 |
+
# Compute embeddings
|
37 |
+
print("Loading dataset and embedding model...")
|
38 |
+
embeddings = embedding_model.encode(dataset['text_for_embedding'], show_progress_bar=True)
|
39 |
+
embeddings = np.array(embeddings, dtype=np.float32)
|
40 |
+
|
41 |
+
# Build FAISS index
|
42 |
+
dimension = embeddings.shape[1]
|
43 |
+
index = faiss.IndexFlatL2(dimension)
|
44 |
+
index.add(embeddings)
|
45 |
+
print(f"Index is ready. Total vectors in index: {index.ntotal}")
|
46 |
+
|
47 |
+
# --- 3. SYNTHETIC GENERATION ---
|
48 |
+
generator = pipeline('text-generation', model='gpt2')
|
49 |
+
|
50 |
+
def get_recommendations_and_generate(query_ingredients, k=3):
|
51 |
+
# 1. Get Recommendations
|
52 |
+
query_vector = embedding_model.encode([query_ingredients])
|
53 |
+
query_vector = np.array(query_vector, dtype=np.float32)
|
54 |
+
distances, indices = index.search(query_vector, k)
|
55 |
+
|
56 |
+
results = []
|
57 |
+
for i, idx_numpy in enumerate(indices[0]):
|
58 |
+
idx = int(idx_numpy) # FIX: Convert numpy.int64 to standard Python int
|
59 |
+
recipe = {
|
60 |
+
"title": dataset[idx]['title'],
|
61 |
+
"ingredients": dataset[idx]['ingredients'],
|
62 |
+
"directions": dataset[idx]['directions']
|
63 |
+
}
|
64 |
+
results.append(recipe)
|
65 |
+
|
66 |
+
# 2. Generate a new recipe idea
|
67 |
+
prompt = f"Create a short, simple recipe title and a list of ingredients using: {query_ingredients}."
|
68 |
+
generated_text = generator(prompt, max_length=100, num_return_sequences=1)[0]['generated_text']
|
69 |
+
|
70 |
+
# Clean up generated text to be more readable
|
71 |
+
# (This is a basic cleanup, can be improved)
|
72 |
+
generated_recipe_parts = generated_text.split("Ingredients:")
|
73 |
+
generated_title = generated_recipe_parts[0].replace(prompt.replace(f"using: {query_ingredients}",""), "").strip()
|
74 |
+
generated_ingredients = generated_recipe_parts[1].strip() if len(generated_recipe_parts) > 1 else "Could not determine ingredients."
|
75 |
+
|
76 |
+
generated_recipe = {
|
77 |
+
"title": generated_title,
|
78 |
+
"ingredients": generated_ingredients,
|
79 |
+
"directions": "This is an AI-generated idea. Directions are not provided."
|
80 |
+
}
|
81 |
+
|
82 |
+
return results[0], results[1], results[2], generated_recipe
|
83 |
+
|
84 |
+
# --- 4. GRADIO USER INTERFACE ---
|
85 |
+
def format_recipe(recipe):
|
86 |
+
if not recipe or not recipe['title']:
|
87 |
+
return "### No recipe found."
|
88 |
+
return f"### {recipe['title']}\n**Ingredients:**\n{recipe['ingredients']}\n\n**Directions:**\n{recipe['directions']}"
|
89 |
+
|
90 |
+
def recipe_wizard(ingredients):
|
91 |
+
rec1, rec2, rec3, gen_rec = get_recommendations_and_generate(ingredients)
|
92 |
+
return format_recipe(rec1), format_recipe(rec2), format_recipe(rec3), format_recipe(gen_rec)
|
93 |
+
|
94 |
+
end_time = time.time()
|
95 |
+
print(f"Models and data loaded in {end_time - start_time:.2f} seconds.")
|
96 |
+
|
97 |
+
# Gradio Interface
|
98 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
99 |
+
gr.Markdown("# 🍳 RecipeWizard AI")
|
100 |
+
gr.Markdown("Enter the ingredients you have, and get recipe recommendations plus a new AI-generated idea!")
|
101 |
+
|
102 |
+
with gr.Row():
|
103 |
+
ingredient_input = gr.Textbox(label="Your Ingredients", placeholder="e.g., chicken, rice, tomatoes, garlic")
|
104 |
+
submit_btn = gr.Button("Get Recipes")
|
105 |
+
|
106 |
+
with gr.Row():
|
107 |
+
with gr.Column():
|
108 |
+
gr.Markdown("### Recommended Recipes")
|
109 |
+
output_rec1 = gr.Markdown()
|
110 |
+
output_rec2 = gr.Markdown()
|
111 |
+
output_rec3 = gr.Markdown()
|
112 |
+
with gr.Column():
|
113 |
+
gr.Markdown("### ✨ AI-Generated Idea")
|
114 |
+
output_gen = gr.Markdown()
|
115 |
+
|
116 |
+
submit_btn.click(
|
117 |
+
fn=recipe_wizard,
|
118 |
+
inputs=ingredient_input,
|
119 |
+
outputs=[output_rec1, output_rec2, output_rec3, output_gen]
|
120 |
+
)
|
121 |
+
|
122 |
+
gr.Examples(
|
123 |
+
examples=[
|
124 |
+
["chicken, broccoli, cheese"],
|
125 |
+
["ground beef, potatoes, onions"],
|
126 |
+
["flour, sugar, eggs, butter"]
|
127 |
+
],
|
128 |
+
inputs=ingredient_input
|
129 |
+
)
|
130 |
+
|
131 |
+
demo.launch()
|
recipe_index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90b9a5c8797e28a0fe4130d9af7ccdb897d0849110ea43765aee3b7b670b14ef
|
3 |
+
size 30720045
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.1.0
|
2 |
+
faiss-cpu==1.7.4
|
3 |
+
gradio==4.8.0
|
4 |
+
pyarrow==14.0.1
|
5 |
+
datasets==2.15.0
|
6 |
+
transformers==4.35.2
|
7 |
+
sentence-transformers==2.3.1
|
8 |
+
huggingface-hub==0.19.4
|