Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -35,28 +35,28 @@ tokenizer, llava_model, image_processor, context_len = load_pretrained_model(
|
|
35 |
@spaces.GPU
|
36 |
def bot_streaming(message, history):
|
37 |
print(message)
|
38 |
-
|
39 |
|
40 |
# Check if there's an image in the current message
|
41 |
if message["files"]:
|
42 |
# message["files"][-1] could be a dictionary or a string
|
43 |
if isinstance(message["files"][-1], dict):
|
44 |
-
|
45 |
else:
|
46 |
-
|
47 |
else:
|
48 |
-
# If no image in the current message, look in the history for the last image
|
49 |
for hist in history:
|
50 |
if isinstance(hist[0], tuple):
|
51 |
-
|
52 |
|
53 |
-
# Error handling if no image is found
|
54 |
-
if
|
55 |
raise gr.Error("You need to upload an image for LLaVA to work.")
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
|
61 |
# Generate the prompt for the model
|
62 |
prompt = message['text']
|
@@ -105,7 +105,8 @@ with gr.Blocks(fill_height=True) as demo:
|
|
105 |
fn=bot_streaming,
|
106 |
title="FinLLaVA",
|
107 |
examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
|
108 |
-
{"text": "How to make this pastry?", "files": ["./baklava.png"]}
|
|
|
109 |
stop_btn="Stop Generation",
|
110 |
multimodal=True,
|
111 |
textbox=chat_input,
|
|
|
35 |
@spaces.GPU
|
36 |
def bot_streaming(message, history):
|
37 |
print(message)
|
38 |
+
image_path = None
|
39 |
|
40 |
# Check if there's an image in the current message
|
41 |
if message["files"]:
|
42 |
# message["files"][-1] could be a dictionary or a string
|
43 |
if isinstance(message["files"][-1], dict):
|
44 |
+
image_path = message["files"][-1]["path"]
|
45 |
else:
|
46 |
+
image_path = message["files"][-1]
|
47 |
else:
|
48 |
+
# If no image in the current message, look in the history for the last image path
|
49 |
for hist in history:
|
50 |
if isinstance(hist[0], tuple):
|
51 |
+
image_path = hist[0][0]
|
52 |
|
53 |
+
# Error handling if no image path is found
|
54 |
+
if image_path is None:
|
55 |
raise gr.Error("You need to upload an image for LLaVA to work.")
|
56 |
|
57 |
+
# If the image_path is a string, no need to load it into a PIL image
|
58 |
+
# Just use the path directly in the next steps
|
59 |
+
print(f"\033[91m{image_path}, {type(image_path)}\033[0m")
|
60 |
|
61 |
# Generate the prompt for the model
|
62 |
prompt = message['text']
|
|
|
105 |
fn=bot_streaming,
|
106 |
title="FinLLaVA",
|
107 |
examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
|
108 |
+
{"text": "How to make this pastry?", "files": ["./baklava.png"]},
|
109 |
+
{"text":"What is this?","files":["http://images.cocodataset.org/val2017/000000039769.jpg"]}],
|
110 |
stop_btn="Stop Generation",
|
111 |
multimodal=True,
|
112 |
textbox=chat_input,
|