FinLLaVA / app.py
TobyYang7's picture
Update app.py
386e329 verified
raw
history blame
1.7 kB
import gradio as gr
from llava_llama3.serve.cli import chat_llava
from llava_llama3.model.builder import load_pretrained_model
from PIL import Image
import torch
# Model configuration
model_path = "TheFinAI/FinLLaVA"
device = "cuda"
conv_mode = "llama_3"
temperature = 0
max_new_tokens = 512
load_8bit = False
load_4bit = False
# Load the pretrained model
tokenizer, llava_model, image_processor, context_len = load_pretrained_model(
model_path,
None,
'llava_llama3',
load_8bit,
load_4bit,
device=device
)
# Define the prediction function
@spaces.GPU
def bot_streaming(image, text, history):
output = chat_llava(
args=None,
image_file=image,
text=text,
tokenizer=tokenizer,
model=llava_model,
image_processor=image_processor,
context_len=context_len
)
history.append((text, output))
return history, gr.update(value="")
# Create the Gradio interface
with gr.Blocks() as demo:
chatbot = gr.Chatbot(label="FinLLaVA Chatbot")
image_input = gr.Image(type="filepath", label="Upload Image")
text_input = gr.Textbox(label="Enter your message")
submit_btn = gr.Button("Submit")
# Define interaction: when submit is clicked, call bot_streaming and update the chatbot
submit_btn.click(fn=bot_streaming, inputs=[image_input, text_input, chatbot], outputs=[chatbot, text_input])
# Add example inputs
gr.Examples(
examples=[["./bee.jpg", "What is on the flower?"],
["./baklava.png", "How to make this pastry?"]],
inputs=[image_input, text_input]
)
# Launch the Gradio app
demo.queue(api_open=False)
demo.launch(show_api=False, share=False)