That1BrainCell commited on
Commit
d27bd4f
·
verified ·
1 Parent(s): fff4b44

Wrong Deleting

Browse files
Files changed (1) hide show
  1. infridgement_score.py +0 -174
infridgement_score.py DELETED
@@ -1,174 +0,0 @@
1
- import streamlit as st
2
- import concurrent.futures
3
- from concurrent.futures import ThreadPoolExecutor,as_completed
4
- from functools import partial
5
- import numpy as np
6
- from io import StringIO
7
- import sys
8
- import time
9
-
10
- # File Imports
11
- from embedding import get_embeddings # Ensure this file/module is available
12
- from preprocess import filtering # Ensure this file/module is available
13
- from search import *
14
-
15
- # Cosine Similarity Function
16
- def cosine_similarity(vec1, vec2):
17
- vec1 = np.array(vec1)
18
- vec2 = np.array(vec2)
19
-
20
- dot_product = np.dot(vec1, vec2)
21
- magnitude_vec1 = np.linalg.norm(vec1)
22
- magnitude_vec2 = np.linalg.norm(vec2)
23
-
24
- if magnitude_vec1 == 0 or magnitude_vec2 == 0:
25
- return 0.0
26
-
27
- cosine_sim = dot_product / (magnitude_vec1 * magnitude_vec2)
28
- return cosine_sim
29
-
30
- # Logger class to capture output
31
- class StreamCapture:
32
- def __init__(self):
33
- self.output = StringIO()
34
- self._stdout = sys.stdout
35
-
36
- def __enter__(self):
37
- sys.stdout = self.output
38
- return self.output
39
-
40
- def __exit__(self, exc_type, exc_val, exc_tb):
41
- sys.stdout = self._stdout
42
-
43
- # Main Function
44
- def score(main_product, main_url, product_count, link_count, search, logger, log_area):
45
- data = {}
46
- similar_products = extract_similar_products(main_product)[:product_count]
47
-
48
- if search == 'All':
49
-
50
- def process_product(product, search_function, main_product):
51
- search_result = search_function(product)
52
- return filtering(search_result, main_product, product, link_count)
53
-
54
-
55
- search_functions = {
56
- 'google': search_google,
57
- 'duckduckgo': search_duckduckgo,
58
- # 'archive': search_archive,
59
- 'github': search_github,
60
- 'wikipedia': search_wikipedia
61
- }
62
-
63
- with ThreadPoolExecutor() as executor:
64
- future_to_product_search = {
65
- executor.submit(process_product, product, search_function, main_product): (product, search_name)
66
- for product in similar_products
67
- for search_name, search_function in search_functions.items()
68
- }
69
-
70
- for future in as_completed(future_to_product_search):
71
- product, search_name = future_to_product_search[future]
72
- try:
73
- if product not in data:
74
- data[product] = {}
75
- data[product] = future.result()
76
- except Exception as e:
77
- print(f"Error processing product {product} with {search_name}: {e}")
78
-
79
- else:
80
-
81
- for product in similar_products:
82
-
83
- if search == 'google':
84
- data[product] = filtering(search_google(product), main_product, product, link_count)
85
- elif search == 'duckduckgo':
86
- data[product] = filtering(search_duckduckgo(product), main_product, product, link_count)
87
- elif search == 'archive':
88
- data[product] = filtering(search_archive(product), main_product, product, link_count)
89
- elif search == 'github':
90
- data[product] = filtering(search_github(product), main_product, product, link_count)
91
- elif search == 'wikipedia':
92
- data[product] = filtering(search_wikipedia(product), main_product, product, link_count)
93
-
94
- logger.write("\n\nFiltered Links ------------------>\n")
95
- logger.write(str(data) + "\n")
96
- log_area.text(logger.getvalue())
97
-
98
- logger.write("\n\nCreating Main product Embeddings ---------->\n")
99
- main_result, main_embedding = get_embeddings(main_url,tag_option)
100
- log_area.text(logger.getvalue())
101
-
102
- print("main",main_embedding)
103
-
104
- cosine_sim_scores = []
105
-
106
- logger.write("\n\nCreating Similar product Embeddings ---------->\n")
107
- log_area.text(logger.getvalue())
108
-
109
-
110
- for product in data:
111
-
112
- if len(data[product])==0:
113
- logger.write("\n\nNo Product links Found Increase No of Links or Change Search Source\n")
114
- log_area.text(logger.getvalue())
115
-
116
- cosine_sim_scores.append((product,'No Product links Found Increase Number of Links or Change Search Source',None,None))
117
-
118
- else:
119
- for link in data[product][:link_count]:
120
-
121
- similar_result, similar_embedding = get_embeddings(link,tag_option)
122
- log_area.text(logger.getvalue())
123
-
124
- print(similar_embedding)
125
- for i in range(len(main_embedding)):
126
- score = cosine_similarity(main_embedding[i], similar_embedding[i])
127
- cosine_sim_scores.append((product, link, i, score))
128
- log_area.text(logger.getvalue())
129
-
130
- logger.write("--------------- DONE -----------------\n")
131
- log_area.text(logger.getvalue())
132
- return cosine_sim_scores, main_result
133
-
134
- # Streamlit Interface
135
- st.title("Check Infringement")
136
-
137
-
138
- # Inputs
139
- main_product = st.text_input('Enter Main Product Name', 'Philips led 7w bulb')
140
- main_url = st.text_input('Enter Main Product Manual URL', 'https://www.assets.signify.com/is/content/PhilipsConsumer/PDFDownloads/Colombia/technical-sheets/ODLI20180227_001-UPD-es_CO-Ficha_Tecnica_LED_MR16_Master_7W_Dim_12V_CRI90.pdf')
141
- search_method = st.selectbox('Choose Search Engine', ['All','duckduckgo', 'google', 'archive', 'github', 'wikipedia'])
142
-
143
- col1, col2 = st.columns(2)
144
- with col1:
145
- product_count = st.number_input("Number of Simliar Products",min_value=1, step=1, format="%i")
146
- with col2:
147
- link_count = st.number_input("Number of Links per product",min_value=1, step=1, format="%i")
148
-
149
-
150
- tag_option = st.selectbox('Choose Similarity Method', ["Complete Document Similarity","Feild Wise Document Similarity"])
151
-
152
-
153
- if st.button('Check for Infringement'):
154
- log_output = st.empty() # Placeholder for log output
155
-
156
- with st.spinner('Processing...'):
157
- with StreamCapture() as logger:
158
- cosine_sim_scores, main_result = score(main_product, main_url,product_count, link_count, search_method, logger, log_output)
159
-
160
- st.success('Processing complete!')
161
-
162
- st.subheader("Cosine Similarity Scores")
163
-
164
- # = score(main_product, main_url, search, logger, log_output)
165
- if tag_option == 'Complete Document Similarity':
166
- tags = ['Details']
167
- else:
168
- tags = ['Introduction', 'Specifications', 'Product Overview', 'Safety Information', 'Installation Instructions', 'Setup and Configuration', 'Operation Instructions', 'Maintenance and Care', 'Troubleshooting', 'Warranty Information', 'Legal Information']
169
-
170
- for product, link, index, value in cosine_sim_scores:
171
- if not index:
172
- st.write(f"Product: {product}, Link: {link}")
173
- if value!=None:
174
- st.write(f"{tags[index]:<20} - Similarity: {value:.2f}")