Update db
Browse files
app.py
CHANGED
@@ -251,124 +251,132 @@ with st.sidebar:
|
|
251 |
|
252 |
top_similar_count = st.number_input("Top Similarities to be Displayed", value=3, min_value=1, step=1, format="%i")
|
253 |
|
254 |
-
if st.button('Check for Infringement'):
|
255 |
-
global log_output
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
-
for path in os.listdir('/home/user/app/embeddings'):
|
266 |
-
print(path)
|
267 |
-
if os.path.exists('/home/user/app/embeddings'):
|
268 |
-
download_db()
|
269 |
-
print("\u2713 Downloaded Database\n\n")
|
270 |
-
|
271 |
-
with StreamCapture() as logger:
|
272 |
-
top_similar_values = score(main_product, main_url, product_count, link_count, search_method, logger, log_output)
|
273 |
-
|
274 |
-
st.success('✅ Processing complete!')
|
275 |
-
|
276 |
-
st.subheader("📈 Cosine Similarity Scores")
|
277 |
-
|
278 |
-
for main_text, main_vector, response, _ in top_similar_values:
|
279 |
-
product_name = response['metadatas'][0][0]['product_name']
|
280 |
-
link = response['metadatas'][0][0]['url']
|
281 |
-
similar_text = response['metadatas'][0][0]['text']
|
282 |
-
# similar_text_refined = imporve_text(similar_text)
|
283 |
-
# main_text_refined = imporve_text(main_text)
|
284 |
-
|
285 |
-
cosine_score = cosine_similarity([main_vector], response['embeddings'][0])[0][0]
|
286 |
-
|
287 |
-
# Display the product information
|
288 |
-
with st.expander(f"### Product: {product_name} - Score: {cosine_score:.4f}"):
|
289 |
-
link = link.replace(" ","%20")
|
290 |
-
st.markdown(f"[View Product Manual]({link})")
|
291 |
-
tab1, tab2 = st.tabs(["Raw Text", "Refined Text"])
|
292 |
-
with tab2:
|
293 |
-
col1, col2 = st.columns(2)
|
294 |
-
with col1:
|
295 |
-
st.markdown(f"*Main Text:\n* {imporve_text(main_text)}")
|
296 |
-
with col2:
|
297 |
-
st.markdown(f"*Similar Text\n:* {imporve_text(similar_text)}")
|
298 |
-
|
299 |
-
with tab1:
|
300 |
-
col1, col2 = st.columns(2)
|
301 |
-
with col1:
|
302 |
-
st.markdown(f"*Main Text:* {main_text}")
|
303 |
-
with col2:
|
304 |
-
st.markdown(f"*Similar Text:* {similar_text}")
|
305 |
-
|
306 |
-
if need_image == 'True':
|
307 |
-
with st.spinner('Processing Images...'):
|
308 |
-
emb_main , main_prod_imgs = get_image_embeddings(main_product)
|
309 |
-
similar_prod = extract_similar_products(main_product)[0]
|
310 |
-
emb_similar , similar_prod_imgs = get_image_embeddings(similar_prod)
|
311 |
-
|
312 |
-
similarity_matrix = np.zeros((5, 5))
|
313 |
-
for i in range(5):
|
314 |
-
for j in range(5):
|
315 |
-
similarity_matrix[i][j] = cosine_similarity([emb_main[i]], [emb_similar[j]])[0][0]
|
316 |
-
|
317 |
-
st.subheader("Image Similarity")
|
318 |
-
# Create an interactive heatmap
|
319 |
-
fig = px.imshow(similarity_matrix,
|
320 |
-
labels=dict(x=f"{similar_prod} Images", y=f"{main_product} Images", color="Similarity"),
|
321 |
-
x=[f"Image {i+1}" for i in range(5)],
|
322 |
-
y=[f"Image {i+1}" for i in range(5)],
|
323 |
-
color_continuous_scale="Viridis")
|
324 |
-
|
325 |
-
# Add title to the heatmap
|
326 |
-
fig.update_layout(title="Image Similarity Heatmap")
|
327 |
-
|
328 |
-
# Display the interactive heatmap
|
329 |
-
st.plotly_chart(fig)
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
@st.experimental_fragment
|
334 |
-
def image_viewer():
|
335 |
-
# Form to handle image selection
|
336 |
-
|
337 |
-
st.subheader("Image Viewer")
|
338 |
-
|
339 |
-
selected_row = st.selectbox('Select a row (Main Product Image)', [f'Image {i+1}' for i in range(5)])
|
340 |
-
selected_col = st.selectbox('Select a column (Similar Product Image)', [f'Image {i+1}' for i in range(5)])
|
341 |
-
|
342 |
-
# Get the selected indices from session state
|
343 |
-
row_idx = int(selected_row.split()[1]) - 1
|
344 |
-
col_idx = int(selected_col.split()[1]) - 1
|
345 |
-
|
346 |
-
col1, col2 = st.columns(2)
|
347 |
-
|
348 |
-
with col1:
|
349 |
-
st.image(main_prod_imgs[row_idx], caption=f'Main Product Image {row_idx+1}', use_column_width=True)
|
350 |
-
with col2:
|
351 |
-
st.image(similar_prod_imgs[col_idx], caption=f'Similar Product Image {col_idx+1}', use_column_width=True)
|
352 |
-
|
353 |
-
# Call the fragment
|
354 |
-
image_viewer()
|
355 |
-
|
356 |
-
def zip_folder(folder_path, zip_name):
|
357 |
-
# Create a zip file from the folder
|
358 |
-
shutil.make_archive(zip_name, 'zip', folder_path)
|
359 |
-
return zip_name + '.zip'
|
360 |
-
|
361 |
-
folder_path = '/home/user/app/embeddings'
|
362 |
-
zip_name = 'embedding'
|
363 |
-
|
364 |
-
if st.button("Download"):
|
365 |
-
zip_file = zip_folder(folder_path, zip_name)
|
366 |
-
with open(zip_file, "rb") as f:
|
367 |
-
st.download_button(
|
368 |
-
label="Download ZIP",
|
369 |
-
data=f,
|
370 |
-
file_name=zip_file,
|
371 |
-
mime="application/zip"
|
372 |
-
)
|
373 |
|
374 |
|
|
|
251 |
|
252 |
top_similar_count = st.number_input("Top Similarities to be Displayed", value=3, min_value=1, step=1, format="%i")
|
253 |
|
|
|
|
|
254 |
|
255 |
+
col1,col2 = st.columns([7,3])
|
256 |
+
|
257 |
+
with col1:
|
258 |
+
run_streamlit = st.button('Check for Infringement')
|
259 |
+
|
260 |
+
|
261 |
+
if run_streamlit:
|
262 |
+
global log_output
|
263 |
+
|
264 |
+
tab1, tab2 = st.tabs(["📊 Output", "🖥️ Console"])
|
265 |
+
|
266 |
+
with tab2:
|
267 |
+
log_output = st.empty()
|
268 |
+
|
269 |
+
with tab1:
|
270 |
+
with st.spinner('Processing...'):
|
271 |
+
|
272 |
+
if len(os.listdir('/home/user/app/embeddings'))<2:
|
273 |
+
download_db()
|
274 |
+
print("\u2713 Downloaded Database\n\n")
|
275 |
+
|
276 |
+
with StreamCapture() as logger:
|
277 |
+
top_similar_values = score(main_product, main_url, product_count, link_count, search_method, logger, log_output)
|
278 |
+
|
279 |
+
st.success('✅ Processing complete!')
|
280 |
+
|
281 |
+
st.subheader("📈 Cosine Similarity Scores")
|
282 |
+
|
283 |
+
for main_text, main_vector, response, _ in top_similar_values:
|
284 |
+
product_name = response['metadatas'][0][0]['product_name']
|
285 |
+
link = response['metadatas'][0][0]['url']
|
286 |
+
similar_text = response['metadatas'][0][0]['text']
|
287 |
+
# similar_text_refined = imporve_text(similar_text)
|
288 |
+
# main_text_refined = imporve_text(main_text)
|
289 |
+
|
290 |
+
cosine_score = cosine_similarity([main_vector], response['embeddings'][0])[0][0]
|
291 |
+
|
292 |
+
# Display the product information
|
293 |
+
with st.expander(f"### Product: {product_name} - Score: {cosine_score:.4f}"):
|
294 |
+
link = link.replace(" ","%20")
|
295 |
+
st.markdown(f"[View Product Manual]({link})")
|
296 |
+
tab1, tab2 = st.tabs(["Raw Text", "Refined Text"])
|
297 |
+
with tab2:
|
298 |
+
col1, col2 = st.columns(2)
|
299 |
+
with col1:
|
300 |
+
st.markdown(f"*Main Text:\n* {imporve_text(main_text)}")
|
301 |
+
with col2:
|
302 |
+
st.markdown(f"*Similar Text\n:* {imporve_text(similar_text)}")
|
303 |
+
|
304 |
+
with tab1:
|
305 |
+
col1, col2 = st.columns(2)
|
306 |
+
with col1:
|
307 |
+
st.markdown(f"*Main Text:* {main_text}")
|
308 |
+
with col2:
|
309 |
+
st.markdown(f"*Similar Text:* {similar_text}")
|
310 |
+
|
311 |
+
if need_image == 'True':
|
312 |
+
with st.spinner('Processing Images...'):
|
313 |
+
emb_main , main_prod_imgs = get_image_embeddings(main_product)
|
314 |
+
similar_prod = extract_similar_products(main_product)[0]
|
315 |
+
emb_similar , similar_prod_imgs = get_image_embeddings(similar_prod)
|
316 |
+
|
317 |
+
similarity_matrix = np.zeros((5, 5))
|
318 |
+
for i in range(5):
|
319 |
+
for j in range(5):
|
320 |
+
similarity_matrix[i][j] = cosine_similarity([emb_main[i]], [emb_similar[j]])[0][0]
|
321 |
+
|
322 |
+
st.subheader("Image Similarity")
|
323 |
+
# Create an interactive heatmap
|
324 |
+
fig = px.imshow(similarity_matrix,
|
325 |
+
labels=dict(x=f"{similar_prod} Images", y=f"{main_product} Images", color="Similarity"),
|
326 |
+
x=[f"Image {i+1}" for i in range(5)],
|
327 |
+
y=[f"Image {i+1}" for i in range(5)],
|
328 |
+
color_continuous_scale="Viridis")
|
329 |
+
|
330 |
+
# Add title to the heatmap
|
331 |
+
fig.update_layout(title="Image Similarity Heatmap")
|
332 |
+
|
333 |
+
# Display the interactive heatmap
|
334 |
+
st.plotly_chart(fig)
|
335 |
+
|
336 |
+
|
337 |
+
|
338 |
+
@st.experimental_fragment
|
339 |
+
def image_viewer():
|
340 |
+
# Form to handle image selection
|
341 |
+
|
342 |
+
st.subheader("Image Viewer")
|
343 |
+
|
344 |
+
selected_row = st.selectbox('Select a row (Main Product Image)', [f'Image {i+1}' for i in range(5)])
|
345 |
+
selected_col = st.selectbox('Select a column (Similar Product Image)', [f'Image {i+1}' for i in range(5)])
|
346 |
+
|
347 |
+
# Get the selected indices from session state
|
348 |
+
row_idx = int(selected_row.split()[1]) - 1
|
349 |
+
col_idx = int(selected_col.split()[1]) - 1
|
350 |
+
|
351 |
+
col1, col2 = st.columns(2)
|
352 |
+
|
353 |
+
with col1:
|
354 |
+
st.image(main_prod_imgs[row_idx], caption=f'Main Product Image {row_idx+1}', use_column_width=True)
|
355 |
+
with col2:
|
356 |
+
st.image(similar_prod_imgs[col_idx], caption=f'Similar Product Image {col_idx+1}', use_column_width=True)
|
357 |
+
|
358 |
+
# Call the fragment
|
359 |
+
image_viewer()
|
360 |
+
|
361 |
+
|
362 |
+
@st.experimental_dialog("Confirm Database Backup")
|
363 |
+
def update():
|
364 |
+
st.write("Do you want to backup the new changes in the database?")
|
365 |
+
if st.button("Confirm",type="primary"):
|
366 |
+
st.write("Updating Database....")
|
367 |
+
st.session_state.update = {"Done": True}
|
368 |
+
|
369 |
+
update_db()
|
370 |
+
|
371 |
+
st.success('Backup Complete!', icon="✅")
|
372 |
+
time.sleep(2)
|
373 |
+
st.rerun()
|
374 |
+
|
375 |
+
if "update" not in st.session_state:
|
376 |
+
with col2:
|
377 |
+
update_button = st.button("Update Database",type="primary")
|
378 |
+
if update_button:
|
379 |
+
update()
|
380 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
|
382 |
|