Spaces:
Running
Running
Commit
·
71a7417
1
Parent(s):
36e56cd
Dict return
Browse files- .gradio/certificate.pem +31 -0
- gradio.ipynb +215 -55
.gradio/certificate.pem
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-----BEGIN CERTIFICATE-----
|
2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
31 |
+
-----END CERTIFICATE-----
|
gradio.ipynb
CHANGED
@@ -9,65 +9,166 @@
|
|
9 |
"# res = segment_marker(Image.open('notebook/lion.jpg'), '[{\"flag_\":1, \"x_\": 3760.689914766355, \"y_\": 2243.232589377525}]')"
|
10 |
]
|
11 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
{
|
13 |
"cell_type": "code",
|
14 |
"execution_count": null,
|
15 |
"metadata": {},
|
16 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
{
|
18 |
"name": "stderr",
|
19 |
"output_type": "stream",
|
20 |
"text": [
|
21 |
-
"
|
22 |
-
"
|
|
|
23 |
]
|
24 |
},
|
25 |
{
|
26 |
"name": "stdout",
|
27 |
"output_type": "stream",
|
28 |
"text": [
|
29 |
-
"
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
"\n",
|
32 |
-
"
|
|
|
33 |
]
|
34 |
},
|
35 |
{
|
36 |
-
"
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
"<IPython.core.display.HTML object>"
|
42 |
-
]
|
43 |
-
},
|
44 |
-
"metadata": {},
|
45 |
-
"output_type": "display_data"
|
46 |
},
|
47 |
{
|
48 |
"name": "stderr",
|
49 |
"output_type": "stream",
|
50 |
"text": [
|
51 |
-
"
|
52 |
-
"
|
53 |
-
"
|
54 |
-
"
|
55 |
-
" File \"e:\\anaconda\\envs\\text-behind-image-env\\Lib\\site-packages\\gradio\\route_utils.py\", line 323, in call_process_api\n",
|
56 |
-
" output = await app.get_blocks().process_api(\n",
|
57 |
-
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
58 |
-
" File \"e:\\anaconda\\envs\\text-behind-image-env\\Lib\\site-packages\\gradio\\blocks.py\", line 2028, in process_api\n",
|
59 |
-
" data = await self.postprocess_data(block_fn, result[\"prediction\"], state)\n",
|
60 |
-
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
61 |
-
" File \"e:\\anaconda\\envs\\text-behind-image-env\\Lib\\site-packages\\gradio\\blocks.py\", line 1784, in postprocess_data\n",
|
62 |
-
" self.validate_outputs(block_fn, predictions) # type: ignore\n",
|
63 |
-
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
64 |
-
" File \"e:\\anaconda\\envs\\text-behind-image-env\\Lib\\site-packages\\gradio\\blocks.py\", line 1739, in validate_outputs\n",
|
65 |
-
" raise ValueError(\n",
|
66 |
-
"ValueError: A function (segment_marker) didn't return enough output values (needed: 2, returned: 1).\n",
|
67 |
-
" Output components:\n",
|
68 |
-
" [image, image]\n",
|
69 |
-
" Output values returned:\n",
|
70 |
-
" [\"Invalid marker coordinates format. Ensure it's valid JSON.\"]\n"
|
71 |
]
|
72 |
},
|
73 |
{
|
@@ -81,9 +182,24 @@
|
|
81 |
"name": "stderr",
|
82 |
"output_type": "stream",
|
83 |
"text": [
|
84 |
-
"\n",
|
85 |
-
"
|
86 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
]
|
88 |
}
|
89 |
],
|
@@ -101,12 +217,6 @@
|
|
101 |
"\n",
|
102 |
"FAST_SAM = loadModel()\n",
|
103 |
"\n",
|
104 |
-
"# Helper function to convert base64 to PIL image\n",
|
105 |
-
"def base64_to_image(base64_str):\n",
|
106 |
-
" image_data = base64.b64decode(base64_str)\n",
|
107 |
-
" image = Image.open(BytesIO(image_data))\n",
|
108 |
-
" return image\n",
|
109 |
-
"\n",
|
110 |
"# Main processing function\n",
|
111 |
"def segment_marker(img_rgb: Image.Image, marker_coordinates: str):\n",
|
112 |
" # Parse marker coordinates from JSON string\n",
|
@@ -130,15 +240,15 @@
|
|
130 |
" bg_only_removed_img = removeOnlyBg(img_rgb, masks[0])\n",
|
131 |
" img_base64_only_bg = convertToBuffer(bg_only_removed_img)\n",
|
132 |
"\n",
|
133 |
-
" #
|
134 |
-
"
|
135 |
-
"
|
136 |
-
"\n",
|
137 |
-
"
|
138 |
"\n",
|
139 |
" except Exception as e:\n",
|
140 |
" print(f\"An error occurred: {str(e)}\")\n",
|
141 |
-
" return \"An error occurred while processing the image.\"
|
142 |
"\n",
|
143 |
"# Set up the Gradio interface\n",
|
144 |
"iface = gr.Interface(\n",
|
@@ -147,10 +257,7 @@
|
|
147 |
" gr.Image(type=\"pil\", label=\"Upload Image\"),\n",
|
148 |
" gr.Textbox(label=\"Markers Coordinates (JSON format)\")\n",
|
149 |
" ],\n",
|
150 |
-
" outputs
|
151 |
-
" gr.Image(type=\"pil\", label=\"Background Removed with Segmentation\"),\n",
|
152 |
-
" gr.Image(type=\"pil\", label=\"Only Background Removed\")\n",
|
153 |
-
" ],\n",
|
154 |
" title=\"Image Segmentation with Background Removal\",\n",
|
155 |
" description=\"Upload an image and JSON-formatted marker coordinates to perform image segmentation and background removal.\"\n",
|
156 |
")\n",
|
@@ -160,6 +267,59 @@
|
|
160 |
" iface.launch(share=True)\n"
|
161 |
]
|
162 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
{
|
164 |
"cell_type": "code",
|
165 |
"execution_count": null,
|
@@ -170,7 +330,7 @@
|
|
170 |
],
|
171 |
"metadata": {
|
172 |
"kernelspec": {
|
173 |
-
"display_name": "
|
174 |
"language": "python",
|
175 |
"name": "python3"
|
176 |
},
|
|
|
9 |
"# res = segment_marker(Image.open('notebook/lion.jpg'), '[{\"flag_\":1, \"x_\": 3760.689914766355, \"y_\": 2243.232589377525}]')"
|
10 |
]
|
11 |
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": null,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"[{\"flag_\":1, \"x_\": 3760.689914766355, \"y_\": 2243.232589377525}]"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "markdown",
|
23 |
+
"metadata": {},
|
24 |
+
"source": [
|
25 |
+
"# Gradio APP"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": null,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"import base64\n",
|
35 |
+
"from io import BytesIO\n",
|
36 |
+
"import gradio as gr\n",
|
37 |
+
"from PIL import Image\n",
|
38 |
+
"import json\n",
|
39 |
+
"\n",
|
40 |
+
"from tools.tools import convertToBuffer\n",
|
41 |
+
"from visualize.visualize import removeBgFromSegmentImage, removeOnlyBg\n",
|
42 |
+
"from models.model import getMask, loadModel\n",
|
43 |
+
"from models.preprocess import preprocess\n",
|
44 |
+
"\n",
|
45 |
+
"FAST_SAM = loadModel()\n",
|
46 |
+
"\n",
|
47 |
+
"# Helper function to convert base64 to PIL image\n",
|
48 |
+
"def base64_to_image(base64_str):\n",
|
49 |
+
" image_data = base64.b64decode(base64_str)\n",
|
50 |
+
" image = Image.open(BytesIO(image_data))\n",
|
51 |
+
" return image\n",
|
52 |
+
"\n",
|
53 |
+
"# Main processing function\n",
|
54 |
+
"def segment_marker(img_rgb: Image.Image, marker_coordinates: str):\n",
|
55 |
+
" # Parse marker coordinates from JSON string\n",
|
56 |
+
" try:\n",
|
57 |
+
" marker_coordinates = json.loads(marker_coordinates)\n",
|
58 |
+
" except json.JSONDecodeError:\n",
|
59 |
+
" return \"Invalid marker coordinates format. Ensure it's valid JSON.\"\n",
|
60 |
+
"\n",
|
61 |
+
" try:\n",
|
62 |
+
" # Process marker points and labels\n",
|
63 |
+
" input_points, input_labels = preprocess(marker_coordinates)\n",
|
64 |
+
"\n",
|
65 |
+
" print(f\"Processing image with {len(input_points)} marker points...\")\n",
|
66 |
+
" # Get mask for segmentation\n",
|
67 |
+
" masks = getMask(img_rgb, FAST_SAM, input_points, input_labels)\n",
|
68 |
+
"\n",
|
69 |
+
" # Generate the segmented images\n",
|
70 |
+
" bg_removed_segmented_img = removeBgFromSegmentImage(img_rgb, masks[0])\n",
|
71 |
+
" img_base64_bg_segmented = convertToBuffer(bg_removed_segmented_img)\n",
|
72 |
+
"\n",
|
73 |
+
" bg_only_removed_img = removeOnlyBg(img_rgb, masks[0])\n",
|
74 |
+
" img_base64_only_bg = convertToBuffer(bg_only_removed_img)\n",
|
75 |
+
"\n",
|
76 |
+
" # Convert base64 strings to PIL images for Gradio\n",
|
77 |
+
" img_bg_segmented = base64_to_image(img_base64_bg_segmented)\n",
|
78 |
+
" img_bg_only_removed = base64_to_image(img_base64_only_bg)\n",
|
79 |
+
"\n",
|
80 |
+
" return img_bg_segmented, img_bg_only_removed # Return as two separate images\n",
|
81 |
+
"\n",
|
82 |
+
" except Exception as e:\n",
|
83 |
+
" print(f\"An error occurred: {str(e)}\")\n",
|
84 |
+
" return \"An error occurred while processing the image.\", None\n",
|
85 |
+
"\n",
|
86 |
+
"# Set up the Gradio interface\n",
|
87 |
+
"iface = gr.Interface(\n",
|
88 |
+
" fn=segment_marker,\n",
|
89 |
+
" inputs=[\n",
|
90 |
+
" gr.Image(type=\"pil\", label=\"Upload Image\"),\n",
|
91 |
+
" gr.Textbox(label=\"Markers Coordinates (JSON format)\")\n",
|
92 |
+
" ],\n",
|
93 |
+
" outputs=[\n",
|
94 |
+
" gr.Image(type=\"pil\", label=\"Background Removed with Segmentation\"),\n",
|
95 |
+
" gr.Image(type=\"pil\", label=\"Only Background Removed\")\n",
|
96 |
+
" ],\n",
|
97 |
+
" title=\"Image Segmentation with Background Removal\",\n",
|
98 |
+
" description=\"Upload an image and JSON-formatted marker coordinates to perform image segmentation and background removal.\"\n",
|
99 |
+
")\n",
|
100 |
+
"\n",
|
101 |
+
"# Run the Gradio app\n",
|
102 |
+
"if __name__ == \"__main__\":\n",
|
103 |
+
" iface.launch(share=True)\n"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"cell_type": "code",
|
108 |
+
"execution_count": null,
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": []
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "markdown",
|
115 |
+
"metadata": {},
|
116 |
+
"source": [
|
117 |
+
"# APP 2"
|
118 |
+
]
|
119 |
+
},
|
120 |
{
|
121 |
"cell_type": "code",
|
122 |
"execution_count": null,
|
123 |
"metadata": {},
|
124 |
"outputs": [
|
125 |
+
{
|
126 |
+
"name": "stdout",
|
127 |
+
"output_type": "stream",
|
128 |
+
"text": [
|
129 |
+
"Processing image with 1 marker points...\n"
|
130 |
+
]
|
131 |
+
},
|
132 |
{
|
133 |
"name": "stderr",
|
134 |
"output_type": "stream",
|
135 |
"text": [
|
136 |
+
"\n",
|
137 |
+
"0: 736x1024 17 objects, 5068.7ms\n",
|
138 |
+
"Speed: 1549.8ms preprocess, 5068.7ms inference, 5802.7ms postprocess per image at shape (1, 3, 1024, 1024)\n"
|
139 |
]
|
140 |
},
|
141 |
{
|
142 |
"name": "stdout",
|
143 |
"output_type": "stream",
|
144 |
"text": [
|
145 |
+
"Processing image with 1 marker points...\n"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"name": "stderr",
|
150 |
+
"output_type": "stream",
|
151 |
+
"text": [
|
152 |
"\n",
|
153 |
+
"0: 736x1024 17 objects, 4238.3ms\n",
|
154 |
+
"Speed: 541.0ms preprocess, 4238.3ms inference, 3713.8ms postprocess per image at shape (1, 3, 1024, 1024)\n"
|
155 |
]
|
156 |
},
|
157 |
{
|
158 |
+
"name": "stdout",
|
159 |
+
"output_type": "stream",
|
160 |
+
"text": [
|
161 |
+
"Processing image with 1 marker points...\n"
|
162 |
+
]
|
|
|
|
|
|
|
|
|
|
|
163 |
},
|
164 |
{
|
165 |
"name": "stderr",
|
166 |
"output_type": "stream",
|
167 |
"text": [
|
168 |
+
"\n",
|
169 |
+
"0: 736x1024 17 objects, 3183.0ms\n",
|
170 |
+
"Speed: 475.6ms preprocess, 3183.0ms inference, 2650.1ms postprocess per image at shape (1, 3, 1024, 1024)\n",
|
171 |
+
"\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
]
|
173 |
},
|
174 |
{
|
|
|
182 |
"name": "stderr",
|
183 |
"output_type": "stream",
|
184 |
"text": [
|
185 |
+
"0: 736x1024 17 objects, 3026.0ms\n",
|
186 |
+
"Speed: 74.9ms preprocess, 3026.0ms inference, 2444.8ms postprocess per image at shape (1, 3, 1024, 1024)\n",
|
187 |
+
"\n"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"name": "stdout",
|
192 |
+
"output_type": "stream",
|
193 |
+
"text": [
|
194 |
+
"Processing image with 2 marker points...\n"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"name": "stderr",
|
199 |
+
"output_type": "stream",
|
200 |
+
"text": [
|
201 |
+
"0: 736x1024 17 objects, 2810.2ms\n",
|
202 |
+
"Speed: 12.6ms preprocess, 2810.2ms inference, 1752.6ms postprocess per image at shape (1, 3, 1024, 1024)\n"
|
203 |
]
|
204 |
}
|
205 |
],
|
|
|
217 |
"\n",
|
218 |
"FAST_SAM = loadModel()\n",
|
219 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
"# Main processing function\n",
|
221 |
"def segment_marker(img_rgb: Image.Image, marker_coordinates: str):\n",
|
222 |
" # Parse marker coordinates from JSON string\n",
|
|
|
240 |
" bg_only_removed_img = removeOnlyBg(img_rgb, masks[0])\n",
|
241 |
" img_base64_only_bg = convertToBuffer(bg_only_removed_img)\n",
|
242 |
"\n",
|
243 |
+
" # Return the images in a dictionary format as base64 strings\n",
|
244 |
+
" return {\n",
|
245 |
+
" 'bg_removed_segmented_img': f'data:image/png;base64,{img_base64_bg_segmented}',\n",
|
246 |
+
" 'bg_only_removed_segmented_img': f'data:image/png;base64,{img_base64_only_bg}'\n",
|
247 |
+
" }\n",
|
248 |
"\n",
|
249 |
" except Exception as e:\n",
|
250 |
" print(f\"An error occurred: {str(e)}\")\n",
|
251 |
+
" return {'error': \"An error occurred while processing the image.\"}\n",
|
252 |
"\n",
|
253 |
"# Set up the Gradio interface\n",
|
254 |
"iface = gr.Interface(\n",
|
|
|
257 |
" gr.Image(type=\"pil\", label=\"Upload Image\"),\n",
|
258 |
" gr.Textbox(label=\"Markers Coordinates (JSON format)\")\n",
|
259 |
" ],\n",
|
260 |
+
" outputs=\"json\", # Set output to JSON format to return the dictionary\n",
|
|
|
|
|
|
|
261 |
" title=\"Image Segmentation with Background Removal\",\n",
|
262 |
" description=\"Upload an image and JSON-formatted marker coordinates to perform image segmentation and background removal.\"\n",
|
263 |
")\n",
|
|
|
267 |
" iface.launch(share=True)\n"
|
268 |
]
|
269 |
},
|
270 |
+
{
|
271 |
+
"cell_type": "markdown",
|
272 |
+
"metadata": {},
|
273 |
+
"source": [
|
274 |
+
"# Predict"
|
275 |
+
]
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"cell_type": "code",
|
279 |
+
"execution_count": null,
|
280 |
+
"metadata": {},
|
281 |
+
"outputs": [],
|
282 |
+
"source": [
|
283 |
+
"from gradio_client import Client, handle_file"
|
284 |
+
]
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"cell_type": "code",
|
288 |
+
"execution_count": null,
|
289 |
+
"metadata": {},
|
290 |
+
"outputs": [],
|
291 |
+
"source": [
|
292 |
+
"client = Client(\"Tharuneshwar/Text-Behind-Image\")"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"cell_type": "code",
|
297 |
+
"execution_count": null,
|
298 |
+
"metadata": {},
|
299 |
+
"outputs": [],
|
300 |
+
"source": [
|
301 |
+
"result = client.predict(\n",
|
302 |
+
"\t\timg_rgb=handle_file('../notebook/lion.jpg'),\n",
|
303 |
+
"\t\tmarker_coordinates='[{\"flag_\":1, \"x_\": 3760.689914766355, \"y_\": 2243.232589377525}]',\n",
|
304 |
+
"\t\tapi_name=\"/predict\"\n",
|
305 |
+
")\n",
|
306 |
+
"result"
|
307 |
+
]
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"cell_type": "code",
|
311 |
+
"execution_count": null,
|
312 |
+
"metadata": {},
|
313 |
+
"outputs": [],
|
314 |
+
"source": []
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"cell_type": "code",
|
318 |
+
"execution_count": null,
|
319 |
+
"metadata": {},
|
320 |
+
"outputs": [],
|
321 |
+
"source": []
|
322 |
+
},
|
323 |
{
|
324 |
"cell_type": "code",
|
325 |
"execution_count": null,
|
|
|
330 |
],
|
331 |
"metadata": {
|
332 |
"kernelspec": {
|
333 |
+
"display_name": "tbi-gradio-env",
|
334 |
"language": "python",
|
335 |
"name": "python3"
|
336 |
},
|