|
import time
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import functional as F
|
|
|
|
import warnings
|
|
warnings.simplefilter(action='ignore', category=FutureWarning)
|
|
|
|
|
|
batch_size = 8
|
|
block_size = 2048
|
|
eval_interval = 500
|
|
learning_rate = 3e-4
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
eval_iters = 200
|
|
n_embd = 784
|
|
n_head = 12
|
|
n_layer = 12
|
|
dropout = 0.1
|
|
|
|
|
|
scaler = torch.cuda.amp.GradScaler()
|
|
|
|
torch.manual_seed(1337)
|
|
|
|
with open('input.txt', 'r', encoding='utf-8') as f:
|
|
text = f.read()
|
|
|
|
chars = sorted(list(set(text)))
|
|
vocab_size = 50257
|
|
stoi = {ch: i for i, ch in enumerate(chars)}
|
|
itos = {i: ch for i, ch in enumerate(chars)}
|
|
encode = lambda s: [stoi[c] for c in s]
|
|
decode = lambda l: ''.join([itos[i] for i in l])
|
|
|
|
data = torch.tensor(encode(text), dtype=torch.long)
|
|
n = int(0.9 * len(data))
|
|
train_data = data[:n]
|
|
val_data = data[n:]
|
|
|
|
def get_batch(split):
|
|
data = train_data if split == 'train' else val_data
|
|
ix = torch.randint(len(data) - block_size, (batch_size,))
|
|
x = torch.stack([data[i:i + block_size] for i in ix])
|
|
y = torch.stack([data[i + 1:i + block_size + 1] for i in ix])
|
|
x, y = x.to(device), y.to(device)
|
|
return x, y
|
|
|
|
@torch.no_grad()
|
|
def estimate_loss():
|
|
out = {}
|
|
model.eval()
|
|
eval_start_time = time.time()
|
|
for split in ['train', 'val']:
|
|
losses = torch.zeros(eval_iters)
|
|
for k in range(eval_iters):
|
|
X, Y = get_batch(split)
|
|
with torch.cuda.amp.autocast():
|
|
logits, loss = model(X, Y)
|
|
losses[k] = loss.item()
|
|
out[split] = losses.mean()
|
|
eval_time = time.time() - eval_start_time
|
|
print(f"Evaluation time: {eval_time:.2f} seconds")
|
|
model.train()
|
|
return out
|
|
|
|
class Head(nn.Module):
|
|
""" one head of self-attention """
|
|
|
|
def __init__(self, head_size):
|
|
super().__init__()
|
|
self.key = nn.Linear(n_embd, head_size, bias=False)
|
|
self.query = nn.Linear(n_embd, head_size, bias=False)
|
|
self.value = nn.Linear(n_embd, head_size, bias=False)
|
|
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
|
|
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
def forward(self, x):
|
|
|
|
|
|
B,T,C = x.shape
|
|
k = self.key(x)
|
|
q = self.query(x)
|
|
|
|
wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5
|
|
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
|
|
wei = F.softmax(wei, dim=-1)
|
|
wei = self.dropout(wei)
|
|
|
|
v = self.value(x)
|
|
out = wei @ v
|
|
return out
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
""" multiple heads of self-attention in parallel """
|
|
|
|
def __init__(self, num_heads, head_size):
|
|
super().__init__()
|
|
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
|
|
self.proj = nn.Linear(head_size * num_heads, n_embd)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
def forward(self, x):
|
|
out = torch.cat([h(x) for h in self.heads], dim=-1)
|
|
out = self.dropout(self.proj(out))
|
|
return out
|
|
|
|
class FeedFoward(nn.Module):
|
|
""" a simple linear layer followed by a non-linearity """
|
|
|
|
def __init__(self, n_embd):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
nn.Linear(n_embd, 4 * n_embd),
|
|
nn.ReLU(),
|
|
nn.Linear(4 * n_embd, n_embd),
|
|
nn.Dropout(dropout),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
class Block(nn.Module):
|
|
""" Transformer block: communication followed by computation """
|
|
|
|
def __init__(self, n_embd, n_head):
|
|
|
|
super().__init__()
|
|
head_size = n_embd // n_head
|
|
self.sa = MultiHeadAttention(n_head, head_size)
|
|
self.ffwd = FeedFoward(n_embd)
|
|
self.ln1 = nn.LayerNorm(n_embd)
|
|
self.ln2 = nn.LayerNorm(n_embd)
|
|
|
|
def forward(self, x):
|
|
x = x + self.sa(self.ln1(x))
|
|
x = x + self.ffwd(self.ln2(x))
|
|
return x
|
|
|
|
class GPTLanguageModel(nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
|
|
self.position_embedding_table = nn.Embedding(block_size, n_embd)
|
|
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
|
|
self.ln_f = nn.LayerNorm(n_embd)
|
|
self.lm_head = nn.Linear(n_embd, vocab_size)
|
|
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Linear):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
if module.bias is not None:
|
|
torch.nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Embedding):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
|
|
def forward(self, idx, targets=None):
|
|
B, T = idx.shape
|
|
|
|
|
|
tok_emb = self.token_embedding_table(idx)
|
|
pos_emb = self.position_embedding_table(torch.arange(T, device=device))
|
|
x = tok_emb + pos_emb
|
|
x = self.blocks(x)
|
|
x = self.ln_f(x)
|
|
logits = self.lm_head(x)
|
|
|
|
if targets is None:
|
|
loss = None
|
|
else:
|
|
B, T, C = logits.shape
|
|
logits = logits.view(B*T, C)
|
|
targets = targets.view(B*T)
|
|
loss = F.cross_entropy(logits, targets)
|
|
|
|
return logits, loss
|
|
|
|
def generate(self, idx, max_new_tokens):
|
|
|
|
for _ in range(max_new_tokens):
|
|
|
|
idx_cond = idx[:, -block_size:]
|
|
|
|
logits, loss = self(idx_cond)
|
|
|
|
logits = logits[:, -1, :]
|
|
|
|
probs = F.softmax(logits, dim=-1)
|
|
|
|
idx_next = torch.multinomial(probs, num_samples=1)
|
|
|
|
idx = torch.cat((idx, idx_next), dim=1)
|
|
return idx
|
|
|
|
model = GPTLanguageModel()
|
|
m = model.to(device)
|
|
|
|
print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')
|
|
|
|
|
|
context = torch.zeros((1, 1), dtype=torch.long, device=device) |