FoodVision / model.py
Th3BossC's picture
adding 5 different models and switching effnet with swin transformer
738c40d
raw
history blame
587 Bytes
# creating model.py
########## imports ############
import torch
import torch.nn as nn
from torchvision import models, transforms
###############################
def create_model():
weights = models.Swin_B_Weights.DEFAULT
transform = weights.transforms()
model = models.efficientnet_b2(weights = weights)
for param in model.parameters():
param.requires_grad = False
model.classifier = nn.Sequential(
nn.Dropout(p = 0.3, inplace = True),
nn.Linear(in_features = 1408, out_features = 101, bias = True)
)
return model, transform