import streamlit as st from streamlit_elements import elements, mui, editor, dashboard from stqdm import stqdm import textgrad as tg import os class CodeEditor: def __init__(self, data) -> None: self.data = data self.llm_engine = tg.get_engine("gpt-4o") print("="*50, "init", "="*50) self.loss_value = "" self.code_gradients = "" if 'iteration' not in st.session_state: st.session_state.iteration = 0 if 'results' not in st.session_state: st.session_state.results = [] tg.set_backward_engine(self.llm_engine, override=True) def load_layout(self): col1, col2 = st.columns([1, 1]) with col1: self.problem = st.text_area("Problem description:", self.data["default_problem_description"], height=300) with col2: self.loss_system_prompt = st.text_area("Loss system prompt:", self.data["default_loss_system_prompt"], height=150) self.instruction = st.text_area("Instruction for formatted LLM call:", self.data["instruction"], height=100) if "code_content" not in st.session_state: st.session_state.code_content = self.data["default_initial_solution"] def update_code_content(value): st.session_state.code_content = value col1, col2 = st.columns(2) with col1: with elements("monaco_editors_1"): mui.Typography("Initial Solution:", sx={"fontSize": "20px", "fontWeight": "bold"}) editor.Monaco( height=300, defaultLanguage="python", defaultValue=st.session_state.code_content, onChange=update_code_content ) with col2: with elements("monaco_editors_2"): mui.Typography("Current Solution:", sx={"fontSize": "20px", "fontWeight": "bold"}) editor.Monaco( height=300, defaultLanguage="python", value=st.session_state.code_content, options={"readOnly": True} # Make the editor read-only ) # format_string = f"{instruction}\nProblem: {problem}\nCurrent Code: {st.session_state.code_content}" # mui.Typography(format_string) # mui.Typography("Final Snippet vs. Current Solution:", sx={"fontSize": "20px", "fontWeight": "bold"}) # editor.MonacoDiff( # original=self.data["default_target_solution"], # modified=st.session_state.code_content, # height=300, # ) def _run(self): # Code is the variable of interest we want to optimize -- so requires_grad=True solution = st.session_state.code_content code = tg.Variable(value=solution, requires_grad=True, role_description="code instance to optimize") # We are not interested in optimizing the problem -- so requires_grad=False problem = tg.Variable(self.problem, requires_grad=False, role_description="the coding problem") # Let TGD know to update code! optimizer = tg.TGD(parameters=[code]) instruction = self.instruction llm_engine = self.llm_engine loss_system_prompt = self.loss_system_prompt loss_system_prompt = tg.Variable(loss_system_prompt, requires_grad=False, role_description="system prompt to the loss function") format_string = "{instruction}\nProblem: {{problem}}\nCurrent Code: {{code}}" format_string = format_string.format(instruction=self.instruction) fields = {"problem": None, "code": None} formatted_llm_call = tg.autograd.FormattedLLMCall(engine=self.llm_engine, format_string=format_string, fields=fields, system_prompt=loss_system_prompt) # Finally, the loss function def loss_fn(problem: tg.Variable, code: tg.Variable) -> tg.Variable: inputs = {"problem": problem, "code": code} return formatted_llm_call(inputs=inputs, response_role_description=f"evaluation of the {code.get_role_description()}") loss = loss_fn(problem, code) self.loss_value = loss.value self.graph = loss.generate_graph() loss.backward() self.gradients = code.gradients optimizer.step() # Let's update the code st.session_state.code_content = code.value def show_results(self): self._run() st.session_state.iteration += 1 st.session_state.results.append({ 'iteration': st.session_state.iteration, 'loss_value': self.loss_value, 'gradients': self.gradients }) tabs = st.tabs([f"Iteration {i+1}" for i in range(st.session_state.iteration)]) for i, tab in enumerate(tabs): with tab: result = st.session_state.results[i] st.markdown(f"Current iteration: **{result['iteration']}**") col1, col2 = st.columns([1, 1]) with col1: st.markdown("## Loss value") st.markdown(result['loss_value']) with col2: st.markdown("## Code gradients") for j, g in enumerate(result['gradients']): st.markdown(f"### Gradient {j}") st.markdown(g.value)