Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,76 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
|
| 3 |
-
# def greet(name):
|
| 4 |
-
# return "Hello " + name + "!!"
|
| 5 |
-
from sentence_transformers import SentenceTransformer
|
| 6 |
import numpy as np
|
|
|
|
| 7 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 8 |
-
from datasets import load_dataset
|
| 9 |
-
# Load pre-trained SentenceTransformer model
|
| 10 |
-
embedding_model = SentenceTransformer("thenlper/gte-large")
|
| 11 |
|
| 12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
# dataset = load_dataset("hugginglearners/netflix-shows")
|
| 14 |
-
# dataset = dataset.filter(lambda x: x['description'] is not None and x['listed_in'] is not None and x['title'] is not None)
|
| 15 |
-
# data = dataset['train'] # Accessing the 'train' split of the dataset
|
| 16 |
|
| 17 |
-
# # Convert the dataset to a list of dictionaries for easier indexing
|
| 18 |
-
# data_list = list[data]
|
| 19 |
-
# print(data_list)
|
| 20 |
# # Combine description and genre for embedding
|
| 21 |
# def combine_description_title_and_genre(description, listed_in, title):
|
| 22 |
# return f"{description} Genre: {listed_in} Title: {title}"
|
|
@@ -29,80 +83,60 @@ embedding_model = SentenceTransformer("thenlper/gte-large")
|
|
| 29 |
# def vector_search(query):
|
| 30 |
# query_embedding = get_embedding(query)
|
| 31 |
|
| 32 |
-
# #
|
| 33 |
-
#
|
| 34 |
-
|
| 35 |
-
#
|
| 36 |
-
#
|
| 37 |
-
# Load dataset (using the correct dataset identifier for your case)
|
| 38 |
-
dataset = load_dataset("hugginglearners/netflix-shows")
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
return f"{description} Genre: {listed_in} Title: {title}"
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
|
| 46 |
-
return embedding_model.encode(text)
|
| 47 |
|
| 48 |
-
#
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
# Generate embeddings for the dataset using map
|
| 59 |
-
embeddings_dataset = dataset["train"].map(generate_embeddings)
|
| 60 |
-
|
| 61 |
-
# Extract embeddings
|
| 62 |
-
embeddings = np.array([embedding['embedding'] for embedding in embeddings_dataset])
|
| 63 |
-
|
| 64 |
-
# Calculate cosine similarity between the query and all embeddings
|
| 65 |
-
similarities = cosine_similarity([query_embedding], embeddings)
|
| 66 |
-
# # Adjust similarity scores based on ratings
|
| 67 |
-
# ratings = np.array([item["rating"] for item in data_list])
|
| 68 |
-
# adjusted_similarities = similarities * ratings.reshape(-1, 1)
|
| 69 |
-
|
| 70 |
-
# Get top N most similar items (e.g., top 3)
|
| 71 |
-
top_n = 3
|
| 72 |
-
top_indices = similarities[0].argsort()[-top_n:][::-1] # Get indices of the top N results
|
| 73 |
-
top_items = [dataset["train"][i] for i in top_indices]
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
|
| 80 |
-
|
| 81 |
|
| 82 |
-
# Gradio Interface
|
| 83 |
-
def movie_search(query):
|
| 84 |
-
|
| 85 |
-
with gr.Blocks() as demo:
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
|
| 92 |
-
|
| 93 |
|
| 94 |
-
demo.launch()
|
| 95 |
|
| 96 |
|
| 97 |
-
# iface = gr.Interface(fn=movie_search,
|
| 98 |
-
# inputs=gr.inputs.Textbox(label="Enter your query"),
|
| 99 |
-
# outputs="text",
|
| 100 |
-
# live=True,
|
| 101 |
-
# title="Netflix Recommendation System",
|
| 102 |
-
# description="Enter a query to get Netflix recommendations based on description and genre.")
|
| 103 |
|
| 104 |
-
# iface.launch()
|
| 105 |
|
| 106 |
|
| 107 |
-
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 108 |
-
# demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
# Load embeddings and metadata
|
| 6 |
+
embeddings = np.load("path/to/netflix_embeddings.npy")
|
| 7 |
+
metadata = pd.read_csv("path/to/netflix_metadata.csv")
|
| 8 |
+
|
| 9 |
+
# Vector search function
|
| 10 |
+
def vector_search(query, model):
|
| 11 |
+
query_embedding = model.encode(query)
|
| 12 |
+
similarities = cosine_similarity([query_embedding], embeddings)[0]
|
| 13 |
+
top_n = 3
|
| 14 |
+
top_indices = similarities.argsort()[-top_n:][::-1]
|
| 15 |
+
results = metadata.iloc[top_indices]
|
| 16 |
+
|
| 17 |
+
# Format results for display
|
| 18 |
+
result_text = "\n".join(f"Title: {row['title']}, Description: {row['description']}, Genre: {row['listed_in']}" for _, row in results.iterrows())
|
| 19 |
+
return result_text
|
| 20 |
+
|
| 21 |
+
# Gradio Interface
|
| 22 |
+
import gradio as gr
|
| 23 |
+
from sentence_transformers import SentenceTransformer
|
| 24 |
+
|
| 25 |
+
model = SentenceTransformer("thenlper/gte-large")
|
| 26 |
+
with gr.Blocks() as demo:
|
| 27 |
+
query = gr.Textbox(label="Enter your query")
|
| 28 |
+
output = gr.Textbox(label="Recommendations")
|
| 29 |
+
submit_button = gr.Button("Submit")
|
| 30 |
+
|
| 31 |
+
submit_button.click(fn=lambda q: vector_search(q, model), inputs=query, outputs=output)
|
| 32 |
+
|
| 33 |
+
demo.launch()
|
| 34 |
+
|
| 35 |
+
# import gradio as gr
|
| 36 |
+
|
| 37 |
+
# # def greet(name):
|
| 38 |
+
# # return "Hello " + name + "!!"
|
| 39 |
+
# from sentence_transformers import SentenceTransformer
|
| 40 |
+
# import numpy as np
|
| 41 |
+
# from sklearn.metrics.pairwise import cosine_similarity
|
| 42 |
+
# from datasets import load_dataset
|
| 43 |
+
# # Load pre-trained SentenceTransformer model
|
| 44 |
+
# embedding_model = SentenceTransformer("thenlper/gte-large")
|
| 45 |
+
|
| 46 |
+
# # # Example dataset with genres (replace with your actual data)
|
| 47 |
+
# # dataset = load_dataset("hugginglearners/netflix-shows")
|
| 48 |
+
# # dataset = dataset.filter(lambda x: x['description'] is not None and x['listed_in'] is not None and x['title'] is not None)
|
| 49 |
+
# # data = dataset['train'] # Accessing the 'train' split of the dataset
|
| 50 |
+
|
| 51 |
+
# # # Convert the dataset to a list of dictionaries for easier indexing
|
| 52 |
+
# # data_list = list[data]
|
| 53 |
+
# # print(data_list)
|
| 54 |
+
# # # Combine description and genre for embedding
|
| 55 |
+
# # def combine_description_title_and_genre(description, listed_in, title):
|
| 56 |
+
# # return f"{description} Genre: {listed_in} Title: {title}"
|
| 57 |
+
|
| 58 |
+
# # # Generate embedding for the query
|
| 59 |
+
# # def get_embedding(text):
|
| 60 |
+
# # return embedding_model.encode(text)
|
| 61 |
+
|
| 62 |
+
# # # Vector search function
|
| 63 |
+
# # def vector_search(query):
|
| 64 |
+
# # query_embedding = get_embedding(query)
|
| 65 |
+
|
| 66 |
+
# # # Generate embeddings for the combined description and genre
|
| 67 |
+
# # embeddings = np.array([get_embedding(combine_description_title_and_genre(item["description"], item["listed_in"],item["title"])) for item in data_list[0]])
|
| 68 |
+
|
| 69 |
+
# # # Calculate cosine similarity between the query and all embeddings
|
| 70 |
+
# # similarities = cosine_similarity([query_embedding], embeddings)
|
| 71 |
+
# # Load dataset (using the correct dataset identifier for your case)
|
| 72 |
# dataset = load_dataset("hugginglearners/netflix-shows")
|
|
|
|
|
|
|
| 73 |
|
|
|
|
|
|
|
|
|
|
| 74 |
# # Combine description and genre for embedding
|
| 75 |
# def combine_description_title_and_genre(description, listed_in, title):
|
| 76 |
# return f"{description} Genre: {listed_in} Title: {title}"
|
|
|
|
| 83 |
# def vector_search(query):
|
| 84 |
# query_embedding = get_embedding(query)
|
| 85 |
|
| 86 |
+
# # Function to generate embeddings for each item in the dataset
|
| 87 |
+
# def generate_embeddings(example):
|
| 88 |
+
# return {
|
| 89 |
+
# 'embedding': get_embedding(combine_description_title_and_genre(example["description"], example["listed_in"], example["title"]))
|
| 90 |
+
# }
|
|
|
|
|
|
|
| 91 |
|
| 92 |
+
# # Generate embeddings for the dataset using map
|
| 93 |
+
# embeddings_dataset = dataset["train"].map(generate_embeddings)
|
|
|
|
| 94 |
|
| 95 |
+
# # Extract embeddings
|
| 96 |
+
# embeddings = np.array([embedding['embedding'] for embedding in embeddings_dataset])
|
|
|
|
| 97 |
|
| 98 |
+
# # Calculate cosine similarity between the query and all embeddings
|
| 99 |
+
# similarities = cosine_similarity([query_embedding], embeddings)
|
| 100 |
+
# # # Adjust similarity scores based on ratings
|
| 101 |
+
# # ratings = np.array([item["rating"] for item in data_list])
|
| 102 |
+
# # adjusted_similarities = similarities * ratings.reshape(-1, 1)
|
| 103 |
+
|
| 104 |
+
# # Get top N most similar items (e.g., top 3)
|
| 105 |
+
# top_n = 3
|
| 106 |
+
# top_indices = similarities[0].argsort()[-top_n:][::-1] # Get indices of the top N results
|
| 107 |
+
# top_items = [dataset["train"][i] for i in top_indices]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
# # Format the output for display
|
| 110 |
+
# search_result = ""
|
| 111 |
+
# for item in top_items:
|
| 112 |
+
# search_result += f"Title: {item['title']}, Description: {item['description']}, Genre: {item['listed_in']}\n"
|
| 113 |
|
| 114 |
+
# return search_result
|
| 115 |
|
| 116 |
+
# # Gradio Interface
|
| 117 |
+
# def movie_search(query):
|
| 118 |
+
# return vector_search(query)
|
| 119 |
+
# with gr.Blocks() as demo:
|
| 120 |
+
# gr.Markdown("# Netflix Recommendation System")
|
| 121 |
+
# gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
|
| 122 |
+
# query = gr.Textbox(label="Enter your query")
|
| 123 |
+
# output = gr.Textbox(label="Recommendations")
|
| 124 |
+
# submit_button = gr.Button("Submit")
|
| 125 |
|
| 126 |
+
# submit_button.click(fn=movie_search, inputs=query, outputs=output)
|
| 127 |
|
| 128 |
+
# demo.launch()
|
| 129 |
|
| 130 |
|
| 131 |
+
# # iface = gr.Interface(fn=movie_search,
|
| 132 |
+
# # inputs=gr.inputs.Textbox(label="Enter your query"),
|
| 133 |
+
# # outputs="text",
|
| 134 |
+
# # live=True,
|
| 135 |
+
# # title="Netflix Recommendation System",
|
| 136 |
+
# # description="Enter a query to get Netflix recommendations based on description and genre.")
|
| 137 |
|
| 138 |
+
# # iface.launch()
|
| 139 |
|
| 140 |
|
| 141 |
+
# # demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 142 |
+
# # demo.launch()
|