Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| import random | |
| import gradio as gr | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from diffusers import DDPMScheduler, StableDiffusionXLAdapterPipeline, T2IAdapter | |
| DESCRIPTION = "# T2I-Adapter-SDXL Sketch" | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| if torch.cuda.is_available(): | |
| model_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
| adapter = T2IAdapter.from_pretrained( | |
| "Adapter/t2iadapter", | |
| subfolder="sketch_sdxl_1.0", | |
| torch_dtype=torch.float16, | |
| adapter_type="full_adapter_xl", | |
| ) | |
| scheduler = DDPMScheduler.from_pretrained(model_id, subfolder="scheduler") | |
| pipe = StableDiffusionXLAdapterPipeline.from_pretrained( | |
| model_id, | |
| adapter=adapter, | |
| safety_checker=None, | |
| torch_dtype=torch.float16, | |
| variant="fp16", | |
| scheduler=scheduler, | |
| ) | |
| pipe.to(device) | |
| else: | |
| pipe = None | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def run( | |
| image: PIL.Image.Image, | |
| prompt: str, | |
| negative_prompt: str, | |
| num_steps=50, | |
| guidance_scale=7.5, | |
| seed=0, | |
| ) -> PIL.Image.Image: | |
| # Convert the input image, which is a boolean image, to a grayscale image whose value is 0 or 255. | |
| image = image.convert("L") | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| out = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| image=image, | |
| num_inference_steps=num_steps, | |
| generator=generator, | |
| guidance_scale=guidance_scale, | |
| ).images[0] | |
| return out | |
| with gr.Blocks() as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image( | |
| source="canvas", | |
| tool="sketch", | |
| type="pil", | |
| image_mode="1", | |
| invert_colors=True, | |
| shape=(1024, 1024), | |
| brush_radius=20, | |
| height=600, | |
| ) | |
| prompt = gr.Textbox(label="Prompt") | |
| run_button = gr.Button("Run") | |
| with gr.Accordion("Advanced options", open=False): | |
| negative_prompt = gr.Textbox( | |
| label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality" | |
| ) | |
| num_steps = gr.Slider( | |
| label="Number of steps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=50, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.1, | |
| maximum=30.0, | |
| step=0.1, | |
| value=7.5, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Column(): | |
| result = gr.Image(label="Result", height=600) | |
| inputs = [ | |
| image, | |
| prompt, | |
| negative_prompt, | |
| num_steps, | |
| guidance_scale, | |
| seed, | |
| ] | |
| prompt.submit( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=run, | |
| inputs=inputs, | |
| outputs=result, | |
| api_name=False, | |
| ) | |
| run_button.click( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=run, | |
| inputs=inputs, | |
| outputs=result, | |
| api_name="run", | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() | |