Spaces:
Runtime error
Runtime error
demo
Browse files- app.py +100 -102
- configs/visual_tokenizer/qwen_vitg_448.yaml +1 -1
- conversation.py +12 -10
- pretrained/seed_story/george_sft/pytorch_model.bin +1 -1
app.py
CHANGED
|
@@ -37,6 +37,7 @@ IMG_TOKEN = '<img_{:05d}>'
|
|
| 37 |
IMG_FLAG = '<image>'
|
| 38 |
num_img_in_tokens = 64
|
| 39 |
num_img_out_tokens = 64
|
|
|
|
| 40 |
|
| 41 |
resolution_grids = ['1x1', '1x2', '1x3', '1x4', '1x5', '1x6', '1x10', '2x1', '3x1', '4x1', '5x1', '6x1', '10x1', '2x2',
|
| 42 |
'2x3', '3x2', '2x4', '4x2']
|
|
@@ -119,6 +120,7 @@ class LLMService:
|
|
| 119 |
self.agent = hydra.utils.instantiate(agent_cfg, llm=llm)
|
| 120 |
|
| 121 |
self.agent.eval().to(self.llm_device, dtype=self.dtype)
|
|
|
|
| 122 |
print('Init agent mdoel Done')
|
| 123 |
|
| 124 |
noise_scheduler = EulerDiscreteScheduler.from_pretrained(args.diffusion_path, subfolder="scheduler")
|
|
@@ -166,10 +168,13 @@ service = LLMService(args)
|
|
| 166 |
|
| 167 |
|
| 168 |
@spaces.GPU
|
| 169 |
-
def generate(text_list, image_list, max_new_tokens):
|
| 170 |
with torch.no_grad():
|
|
|
|
| 171 |
text_list = text_list.split(IMG_FLAG)
|
|
|
|
| 172 |
top_p = 0.5
|
|
|
|
| 173 |
assert len(text_list) == len(image_list) + 1
|
| 174 |
|
| 175 |
image_tokens = BOI_TOKEN + ''.join(
|
|
@@ -181,31 +186,12 @@ def generate(text_list, image_list, max_new_tokens):
|
|
| 181 |
embeds_cmp_mask = []
|
| 182 |
embeds_gen_mask = []
|
| 183 |
|
| 184 |
-
if service.multi_resolution:
|
| 185 |
-
patch_pos = []
|
| 186 |
-
image_patch_length = []
|
| 187 |
-
image_size_list = []
|
| 188 |
-
|
| 189 |
for idx, image_item in enumerate(image_list):
|
| 190 |
if isinstance(image_item, str):
|
| 191 |
image = decode_image(image_item)
|
| 192 |
print('after decode image size:', image.size)
|
| 193 |
input_images.append(image)
|
| 194 |
|
| 195 |
-
# if service.multi_resolution:
|
| 196 |
-
# image_size_list.append(image.size)
|
| 197 |
-
# print('image size:', image.size)
|
| 198 |
-
# image_tensor, patch_pos_tensor = process_anyres_image(image, service.image_transform,
|
| 199 |
-
# service.grid_pinpoints,
|
| 200 |
-
# service.base_resolution)
|
| 201 |
-
# image_tensor_list.append(image_tensor)
|
| 202 |
-
# patch_pos.append(patch_pos_tensor)
|
| 203 |
-
# image_patch_length.append(image_tensor.shape[0])
|
| 204 |
-
# print('image_patch_length', image_patch_length)
|
| 205 |
-
# embeds_cmp_mask.extend([True] * image_tensor.shape[0])
|
| 206 |
-
# embeds_gen_mask.extend([False] * image_tensor.shape[0])
|
| 207 |
-
#
|
| 208 |
-
# else:
|
| 209 |
image_tensor = service.image_transform(image)
|
| 210 |
image_tensor_list.append(image_tensor)
|
| 211 |
embeds_cmp_mask.append(True)
|
|
@@ -213,23 +199,13 @@ def generate(text_list, image_list, max_new_tokens):
|
|
| 213 |
else:
|
| 214 |
raise ValueError
|
| 215 |
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
for _ in range(patch_length - 1):
|
| 224 |
-
image_tokens += BOP_TOKEN + ''.join(
|
| 225 |
-
IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)) + EOP_TOKEN
|
| 226 |
-
image_tokens += BOI_TOKEN + ''.join(
|
| 227 |
-
IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)) + EOI_TOKEN
|
| 228 |
-
image_tokens_list.append(image_tokens)
|
| 229 |
-
else:
|
| 230 |
-
pixel_values = torch.stack(image_tensor_list).to(service.vit_sd_device, dtype=service.dtype)
|
| 231 |
-
|
| 232 |
-
image_embeds = service.visual_encoder(pixel_values)
|
| 233 |
image_embeds = image_embeds.to(service.llm_device)
|
| 234 |
|
| 235 |
embeds_cmp_mask = torch.tensor(embeds_cmp_mask, dtype=torch.bool).to(service.llm_device)
|
|
@@ -241,10 +217,21 @@ def generate(text_list, image_list, max_new_tokens):
|
|
| 241 |
embeds_cmp_mask = None
|
| 242 |
embeds_gen_mask = None
|
| 243 |
|
|
|
|
| 244 |
input_text = image_tokens.join(text_list)
|
| 245 |
|
| 246 |
-
print('input_text:', input_text)
|
| 247 |
input_ids = service.tokenizer.encode(input_text, add_special_tokens=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
input_ids = [service.tokenizer.bos_token_id] + input_ids
|
| 249 |
|
| 250 |
input_ids = torch.tensor(input_ids).to(service.llm_device, dtype=torch.long)
|
|
@@ -262,7 +249,10 @@ def generate(text_list, image_list, max_new_tokens):
|
|
| 262 |
ids_gen_mask = ids_gen_mask.unsqueeze(0)
|
| 263 |
|
| 264 |
error_msg = []
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
| 266 |
output = service.agent.generate(
|
| 267 |
tokenizer=service.tokenizer,
|
| 268 |
input_ids=input_ids,
|
|
@@ -278,7 +268,6 @@ def generate(text_list, image_list, max_new_tokens):
|
|
| 278 |
|
| 279 |
gen_imgs_base64_list = []
|
| 280 |
generated_text = output['text']
|
| 281 |
-
generated_text = generated_text.replace(EOI_TOKEN, IMG_FLAG).replace(service.tokenizer.eos_token, '')
|
| 282 |
|
| 283 |
torch.cuda.empty_cache()
|
| 284 |
|
|
@@ -294,6 +283,7 @@ def generate(text_list, image_list, max_new_tokens):
|
|
| 294 |
for img_idx in range(output['num_gen_imgs']):
|
| 295 |
img_feat = img_gen_feat[img_idx:img_idx + 1]
|
| 296 |
generated_image = service.sd_adapter.generate(image_embeds=img_feat, num_inference_steps=50)[0]
|
|
|
|
| 297 |
|
| 298 |
# a = time.time()
|
| 299 |
# service.sd_adapter = service.sd_adapter.cpu()
|
|
@@ -301,19 +291,19 @@ def generate(text_list, image_list, max_new_tokens):
|
|
| 301 |
# service.agent = service.agent.to(service.vit_sd_device, dtype=service.dtype)
|
| 302 |
# print("Loading finished: ", time.time() - a)
|
| 303 |
|
| 304 |
-
print(input_text + generated_text)
|
| 305 |
-
return {'text': generated_text, 'images': gen_imgs_base64_list, 'error_msg': error_msg}
|
| 306 |
|
| 307 |
|
| 308 |
-
def http_bot(dialog_state, input_state, max_new_tokens,
|
| 309 |
request: gr.Request):
|
| 310 |
print('input_state:', input_state)
|
| 311 |
-
|
| 312 |
-
if len(dialog_state.messages) == 0 or
|
| 313 |
dialog_state.messages[-1]['message']['text'].strip(' ?.;!/')) == 0:
|
| 314 |
return (dialog_state, input_state, dialog_state.to_gradio_chatbot()) + (no_change_btn,) * 4
|
| 315 |
|
| 316 |
-
if len(dialog_state.messages)
|
| 317 |
output_state = init_input_state()
|
| 318 |
output_state['text'] = 'Error: History exceeds maximum rounds, please clear history and restart.'
|
| 319 |
dialog_state.messages.append({'role': dialog_state.roles[1], 'message': output_state})
|
|
@@ -322,22 +312,40 @@ def http_bot(dialog_state, input_state, max_new_tokens, max_turns,
|
|
| 322 |
|
| 323 |
prompt = dialog_state.get_prompt()
|
| 324 |
text = prompt['text']
|
|
|
|
| 325 |
max_new_tokens = int(max_new_tokens)
|
| 326 |
images = prompt['images']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
| 328 |
-
results = generate(text, images, max_new_tokens)
|
| 329 |
print('response: ', {'text': results['text'], 'error_msg': results['error_msg']})
|
| 330 |
|
| 331 |
output_state = init_input_state()
|
| 332 |
image_dir = get_conv_image_dir()
|
| 333 |
output_state['text'] = results['text']
|
|
|
|
| 334 |
|
| 335 |
for image_base64 in results['images']:
|
| 336 |
if image_base64 == '':
|
| 337 |
image_path = ''
|
| 338 |
else:
|
| 339 |
-
|
| 340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
image_path = get_image_name(image=image, image_dir=image_dir)
|
| 342 |
if not os.path.exists(image_path):
|
| 343 |
image.save(image_path)
|
|
@@ -354,8 +362,8 @@ def http_bot(dialog_state, input_state, max_new_tokens, max_turns,
|
|
| 354 |
IMG_FLAG = '<image>'
|
| 355 |
LOGDIR = 'log'
|
| 356 |
|
| 357 |
-
logger = build_logger("
|
| 358 |
-
headers = {"User-Agent": "SEED-
|
| 359 |
|
| 360 |
no_change_btn = gr.Button()
|
| 361 |
enable_btn = gr.Button(interactive=True)
|
|
@@ -436,10 +444,16 @@ def center_crop_image(image, max_aspect_ratio=1.5):
|
|
| 436 |
|
| 437 |
def vote_last_response(state, vote_type, request: gr.Request):
|
| 438 |
with open(get_conv_log_filename(), "a") as fout:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
data = {
|
| 440 |
"tstamp": round(time.time(), 4),
|
| 441 |
"type": vote_type,
|
| 442 |
-
"state":
|
| 443 |
"ip": request.client.host,
|
| 444 |
}
|
| 445 |
fout.write(json.dumps(data) + "\n")
|
|
@@ -475,7 +489,7 @@ def clear_history(request: gr.Request):
|
|
| 475 |
|
| 476 |
|
| 477 |
def init_input_state():
|
| 478 |
-
return {'images': [], 'text': ''}
|
| 479 |
|
| 480 |
|
| 481 |
def add_text(dialog_state, input_state, text, request: gr.Request):
|
|
@@ -509,13 +523,17 @@ def add_image(dialog_state, input_state, image, request: gr.Request):
|
|
| 509 |
|
| 510 |
print('image size:', image.size)
|
| 511 |
|
| 512 |
-
image = center_crop_image(image, max_aspect_ratio=10)
|
| 513 |
|
| 514 |
image_dir = get_conv_image_dir()
|
| 515 |
image_path = get_image_name(image=image, image_dir=image_dir)
|
| 516 |
if not os.path.exists(image_path):
|
| 517 |
image.save(image_path)
|
| 518 |
input_state['images'].append(image_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 519 |
input_state['text'] += IMG_FLAG
|
| 520 |
|
| 521 |
if len(dialog_state.messages) > 0 and dialog_state.messages[-1]['role'] == dialog_state.roles[0]:
|
|
@@ -548,14 +566,13 @@ title = ("""
|
|
| 548 |
# SEED-Story
|
| 549 |
[[Paper]](https://arxiv.org/abs/2407.08683) [[Code]](https://github.com/TencentARC/SEED-Story)
|
| 550 |
|
| 551 |
-
Demo of
|
| 552 |
SEED-Story is a MLLM capable of generating multimodal long stories consisting of rich and coherent narrative texts, along with images that are consistent in characters and style.
|
| 553 |
|
| 554 |
## Tips:
|
| 555 |
* Check out the conversation examples (at the bottom) for inspiration.
|
| 556 |
-
*
|
| 557 |
-
*
|
| 558 |
-
|
| 559 |
* SEED-Story was trained with English-only data. It may process with other languages due to the inherent capabilities from LLaMA, but might not stable.
|
| 560 |
""")
|
| 561 |
|
|
@@ -577,7 +594,7 @@ img:before {
|
|
| 577 |
position: absolute;
|
| 578 |
top: -10px;
|
| 579 |
left: 0;
|
| 580 |
-
height:
|
| 581 |
width: 100%;
|
| 582 |
background-color: rgb(230, 230, 230);
|
| 583 |
border: 2px dotted rgb(200, 200, 200);
|
|
@@ -601,29 +618,10 @@ img:after {
|
|
| 601 |
|
| 602 |
if __name__ == '__main__':
|
| 603 |
examples_mix = [
|
| 604 |
-
['https://github.com/
|
| 605 |
-
'
|
| 606 |
-
['https://github.com/
|
| 607 |
-
'
|
| 608 |
-
['https://github.com/AILab-CVC/SEED-X/blob/main/demos/arrow.jpg?raw=true',
|
| 609 |
-
'What is the object pointed by the red arrow?'],
|
| 610 |
-
['https://github.com/AILab-CVC/SEED-X/blob/main/demos/shanghai.png?raw=true',
|
| 611 |
-
'Where was this image taken? Explain your answer.'],
|
| 612 |
-
['https://github.com/AILab-CVC/SEED-X/blob/main/demos/GPT4.png?raw=true',
|
| 613 |
-
'How long does it take to make GPT-4 safer?'],
|
| 614 |
-
['https://github.com/AILab-CVC/SEED-X/blob/main/demos/twitter.png?raw=true',
|
| 615 |
-
'Please provide a comprehensive description of this image.'],
|
| 616 |
-
]
|
| 617 |
-
examples_text = [
|
| 618 |
-
['I want to build a two story cabin in the woods, with many commanding windows. Can you show me a picture?'],
|
| 619 |
-
['Use your imagination to design a concept image for Artificial General Intelligence (AGI). Show me an image.'],
|
| 620 |
-
[
|
| 621 |
-
'Can you design an illustration for βThe Three-Body Problemβ to depict a scene from the novel? Show me a picture.'],
|
| 622 |
-
[
|
| 623 |
-
'My four year old son loves toy trains. Can you design a fancy birthday cake for him? Please generate a picture.'],
|
| 624 |
-
[
|
| 625 |
-
'Generate an image of a portrait of young nordic girl, age 25, freckled skin, neck tatoo, blue eyes 35mm lens, photography, ultra details.'],
|
| 626 |
-
['Generate an impressionist painting of an astronaut in a jungle.']
|
| 627 |
]
|
| 628 |
with gr.Blocks(css=css) as demo:
|
| 629 |
gr.Markdown(title)
|
|
@@ -640,10 +638,10 @@ if __name__ == '__main__':
|
|
| 640 |
elem_id='textbox',
|
| 641 |
placeholder="Enter text and image, and press submit,", container=False)
|
| 642 |
with gr.Row():
|
| 643 |
-
add_image_btn = gr.Button("Add Image")
|
| 644 |
-
add_text_btn = gr.Button("Add Text")
|
| 645 |
-
|
| 646 |
submit_btn = gr.Button("Submit")
|
|
|
|
| 647 |
|
| 648 |
with gr.Row():
|
| 649 |
max_new_tokens = gr.Slider(minimum=64,
|
|
@@ -652,14 +650,11 @@ if __name__ == '__main__':
|
|
| 652 |
step=64,
|
| 653 |
interactive=True,
|
| 654 |
label="Max Output Tokens")
|
| 655 |
-
|
| 656 |
-
label="Max
|
| 657 |
-
force_img_gen = gr.Radio(choices=[True, False], value=False, label='Force Image Generation')
|
| 658 |
-
force_bbox = gr.Radio(choices=[True, False], value=False, label='Force Bounding Box')
|
| 659 |
-
force_polish = gr.Radio(choices=[True, False], value=True, label='Force Polishing Generated Image')
|
| 660 |
|
| 661 |
with gr.Column(scale=7):
|
| 662 |
-
chatbot = gr.Chatbot(elem_id='chatbot', label="SEED-
|
| 663 |
with gr.Row():
|
| 664 |
upvote_btn = gr.Button(value="π Upvote", interactive=False)
|
| 665 |
downvote_btn = gr.Button(value="π Downvote", interactive=False)
|
|
@@ -667,10 +662,8 @@ if __name__ == '__main__':
|
|
| 667 |
clear_btn = gr.Button(value="ποΈ Clear history", interactive=False)
|
| 668 |
|
| 669 |
with gr.Row():
|
| 670 |
-
with gr.Column(scale=0
|
| 671 |
gr.Examples(examples=examples_mix, label='Input examples', inputs=[image, text], cache_examples=False)
|
| 672 |
-
with gr.Column(scale=0.3):
|
| 673 |
-
gr.Examples(examples=examples_text, label='Input examples', inputs=[text], cache_examples=False)
|
| 674 |
|
| 675 |
# Register listeners
|
| 676 |
btn_list = [upvote_btn, downvote_btn, regenerate_btn, clear_btn]
|
|
@@ -678,20 +671,25 @@ if __name__ == '__main__':
|
|
| 678 |
downvote_btn.click(downvote_last_response, [dialog_state], [upvote_btn, downvote_btn])
|
| 679 |
|
| 680 |
regenerate_btn.click(regenerate, [dialog_state], [dialog_state, chatbot] + btn_list).then(
|
| 681 |
-
http_bot, [dialog_state, input_state, max_new_tokens,
|
| 682 |
[dialog_state, input_state, chatbot] + btn_list)
|
| 683 |
-
add_image_btn.click(add_image, [dialog_state, input_state, image],
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
add_text_btn.click(add_text, [dialog_state, input_state, text],
|
| 687 |
-
|
| 688 |
|
| 689 |
submit_btn.click(
|
| 690 |
-
add_image, [dialog_state, input_state, image], [dialog_state, input_state, image, chatbot] + btn_list).then(
|
| 691 |
add_text, [dialog_state, input_state, text],
|
| 692 |
[dialog_state, input_state, text, chatbot, upvote_btn, downvote_btn, regenerate_btn, clear_btn]).then(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 693 |
http_bot,
|
| 694 |
-
[dialog_state, input_state, max_new_tokens,
|
| 695 |
[dialog_state, input_state, chatbot] + btn_list)
|
| 696 |
clear_btn.click(clear_history, None, [dialog_state, input_state, chatbot] + btn_list)
|
| 697 |
|
|
|
|
| 37 |
IMG_FLAG = '<image>'
|
| 38 |
num_img_in_tokens = 64
|
| 39 |
num_img_out_tokens = 64
|
| 40 |
+
instruction_prompt = '{instruction}'
|
| 41 |
|
| 42 |
resolution_grids = ['1x1', '1x2', '1x3', '1x4', '1x5', '1x6', '1x10', '2x1', '3x1', '4x1', '5x1', '6x1', '10x1', '2x2',
|
| 43 |
'2x3', '3x2', '2x4', '4x2']
|
|
|
|
| 120 |
self.agent = hydra.utils.instantiate(agent_cfg, llm=llm)
|
| 121 |
|
| 122 |
self.agent.eval().to(self.llm_device, dtype=self.dtype)
|
| 123 |
+
self.agent.llm.base_model.model.use_kv_cache_head = False
|
| 124 |
print('Init agent mdoel Done')
|
| 125 |
|
| 126 |
noise_scheduler = EulerDiscreteScheduler.from_pretrained(args.diffusion_path, subfolder="scheduler")
|
|
|
|
| 168 |
|
| 169 |
|
| 170 |
@spaces.GPU
|
| 171 |
+
def generate(text_list, image_list, image_embed_list, max_new_tokens):
|
| 172 |
with torch.no_grad():
|
| 173 |
+
print('text_list: {}'.format(text_list))
|
| 174 |
text_list = text_list.split(IMG_FLAG)
|
| 175 |
+
text_list = [text_list[0]] + ["[INST]"+item for item in text_list[1:-1]] + [text_list[-1]]
|
| 176 |
top_p = 0.5
|
| 177 |
+
window_size = 8
|
| 178 |
assert len(text_list) == len(image_list) + 1
|
| 179 |
|
| 180 |
image_tokens = BOI_TOKEN + ''.join(
|
|
|
|
| 186 |
embeds_cmp_mask = []
|
| 187 |
embeds_gen_mask = []
|
| 188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
for idx, image_item in enumerate(image_list):
|
| 190 |
if isinstance(image_item, str):
|
| 191 |
image = decode_image(image_item)
|
| 192 |
print('after decode image size:', image.size)
|
| 193 |
input_images.append(image)
|
| 194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
image_tensor = service.image_transform(image)
|
| 196 |
image_tensor_list.append(image_tensor)
|
| 197 |
embeds_cmp_mask.append(True)
|
|
|
|
| 199 |
else:
|
| 200 |
raise ValueError
|
| 201 |
|
| 202 |
+
# pixel_values = torch.stack(image_tensor_list).to(service.vit_sd_device, dtype=service.dtype)
|
| 203 |
+
#
|
| 204 |
+
# image_embeds = service.visual_encoder(pixel_values)
|
| 205 |
+
# image_embeds = image_embeds.to(service.llm_device)
|
| 206 |
+
print(image_embed_list)
|
| 207 |
+
image_embed_list = [t.squeeze(0) for t in image_embed_list]
|
| 208 |
+
image_embeds = torch.stack(image_embed_list, dim=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
image_embeds = image_embeds.to(service.llm_device)
|
| 210 |
|
| 211 |
embeds_cmp_mask = torch.tensor(embeds_cmp_mask, dtype=torch.bool).to(service.llm_device)
|
|
|
|
| 217 |
embeds_cmp_mask = None
|
| 218 |
embeds_gen_mask = None
|
| 219 |
|
| 220 |
+
|
| 221 |
input_text = image_tokens.join(text_list)
|
| 222 |
|
| 223 |
+
print('input_text fed to LLM:', input_text)
|
| 224 |
input_ids = service.tokenizer.encode(input_text, add_special_tokens=False)
|
| 225 |
+
|
| 226 |
+
while image_embeds.shape[0] > window_size:
|
| 227 |
+
eoi_prompt_idx = input_text.index(EOI_TOKEN)
|
| 228 |
+
input_text = input_text[eoi_prompt_idx + len(EOI_TOKEN) + len('[INST]'):]
|
| 229 |
+
image_embeds = image_embeds[1:]
|
| 230 |
+
input_ids = service.tokenizer.encode(input_text, add_special_tokens=False)
|
| 231 |
+
|
| 232 |
+
if image_embeds is not None:
|
| 233 |
+
embeds_cmp_mask = torch.tensor([True] * image_embeds.shape[0]).to(service.llm_device, dtype=torch.bool)
|
| 234 |
+
|
| 235 |
input_ids = [service.tokenizer.bos_token_id] + input_ids
|
| 236 |
|
| 237 |
input_ids = torch.tensor(input_ids).to(service.llm_device, dtype=torch.long)
|
|
|
|
| 249 |
ids_gen_mask = ids_gen_mask.unsqueeze(0)
|
| 250 |
|
| 251 |
error_msg = []
|
| 252 |
+
print('image_embeds_shape: ' + str(image_embeds.shape))
|
| 253 |
+
print('image_embeds: {}'.format(image_embeds))
|
| 254 |
+
print('input_ids: ' + str(input_ids))
|
| 255 |
+
print('ids_cmp_mask: ' + str(ids_cmp_mask))
|
| 256 |
output = service.agent.generate(
|
| 257 |
tokenizer=service.tokenizer,
|
| 258 |
input_ids=input_ids,
|
|
|
|
| 268 |
|
| 269 |
gen_imgs_base64_list = []
|
| 270 |
generated_text = output['text']
|
|
|
|
| 271 |
|
| 272 |
torch.cuda.empty_cache()
|
| 273 |
|
|
|
|
| 283 |
for img_idx in range(output['num_gen_imgs']):
|
| 284 |
img_feat = img_gen_feat[img_idx:img_idx + 1]
|
| 285 |
generated_image = service.sd_adapter.generate(image_embeds=img_feat, num_inference_steps=50)[0]
|
| 286 |
+
gen_imgs_base64_list.append(generated_image)
|
| 287 |
|
| 288 |
# a = time.time()
|
| 289 |
# service.sd_adapter = service.sd_adapter.cpu()
|
|
|
|
| 291 |
# service.agent = service.agent.to(service.vit_sd_device, dtype=service.dtype)
|
| 292 |
# print("Loading finished: ", time.time() - a)
|
| 293 |
|
| 294 |
+
print('[func generate inout+output]: {}'.format(input_text + generated_text))
|
| 295 |
+
return {'text': generated_text, 'images': gen_imgs_base64_list, 'image_embeds': img_feat.detach().clone(), 'error_msg': error_msg}
|
| 296 |
|
| 297 |
|
| 298 |
+
def http_bot(dialog_state, input_state, max_new_tokens, max_length,
|
| 299 |
request: gr.Request):
|
| 300 |
print('input_state:', input_state)
|
| 301 |
+
print(dialog_state.messages)
|
| 302 |
+
if len(dialog_state.messages) == 0 or len(
|
| 303 |
dialog_state.messages[-1]['message']['text'].strip(' ?.;!/')) == 0:
|
| 304 |
return (dialog_state, input_state, dialog_state.to_gradio_chatbot()) + (no_change_btn,) * 4
|
| 305 |
|
| 306 |
+
if len(dialog_state.messages) >= max_length:
|
| 307 |
output_state = init_input_state()
|
| 308 |
output_state['text'] = 'Error: History exceeds maximum rounds, please clear history and restart.'
|
| 309 |
dialog_state.messages.append({'role': dialog_state.roles[1], 'message': output_state})
|
|
|
|
| 312 |
|
| 313 |
prompt = dialog_state.get_prompt()
|
| 314 |
text = prompt['text']
|
| 315 |
+
print('text from http_bot: {}'.format(text))
|
| 316 |
max_new_tokens = int(max_new_tokens)
|
| 317 |
images = prompt['images']
|
| 318 |
+
image_embeds = prompt['image_embeds']
|
| 319 |
+
|
| 320 |
+
results = generate(text, images, image_embeds, max_new_tokens)
|
| 321 |
+
generated_text = results['text']
|
| 322 |
+
pattern = r' <img_000\d{2}>'
|
| 323 |
+
# Replace all occurrences of the pattern with the replacement text
|
| 324 |
+
generated_text = re.sub(pattern, '', generated_text)
|
| 325 |
+
|
| 326 |
+
generated_text = generated_text.replace(' '+service.tokenizer.eos_token, '')\
|
| 327 |
+
.replace('[INST]', '').replace(' '+BOI_TOKEN, '').replace(' '+EOI_TOKEN, IMG_FLAG)
|
| 328 |
+
|
| 329 |
+
results['text'] = generated_text
|
| 330 |
|
|
|
|
| 331 |
print('response: ', {'text': results['text'], 'error_msg': results['error_msg']})
|
| 332 |
|
| 333 |
output_state = init_input_state()
|
| 334 |
image_dir = get_conv_image_dir()
|
| 335 |
output_state['text'] = results['text']
|
| 336 |
+
output_state['image_embeds'].append(results['image_embeds'])
|
| 337 |
|
| 338 |
for image_base64 in results['images']:
|
| 339 |
if image_base64 == '':
|
| 340 |
image_path = ''
|
| 341 |
else:
|
| 342 |
+
if isinstance(image_base64, Image.Image):
|
| 343 |
+
print('generated image is in Image.Image')
|
| 344 |
+
image = image_base64
|
| 345 |
+
else:
|
| 346 |
+
print('generated image is in Image_base64')
|
| 347 |
+
image = decode_image(image_base64)
|
| 348 |
+
image = image.convert('RGB')
|
| 349 |
image_path = get_image_name(image=image, image_dir=image_dir)
|
| 350 |
if not os.path.exists(image_path):
|
| 351 |
image.save(image_path)
|
|
|
|
| 362 |
IMG_FLAG = '<image>'
|
| 363 |
LOGDIR = 'log'
|
| 364 |
|
| 365 |
+
logger = build_logger("gradio_seed_story", LOGDIR)
|
| 366 |
+
headers = {"User-Agent": "SEED-Story Client"}
|
| 367 |
|
| 368 |
no_change_btn = gr.Button()
|
| 369 |
enable_btn = gr.Button(interactive=True)
|
|
|
|
| 444 |
|
| 445 |
def vote_last_response(state, vote_type, request: gr.Request):
|
| 446 |
with open(get_conv_log_filename(), "a") as fout:
|
| 447 |
+
print(state)
|
| 448 |
+
print(state.dict())
|
| 449 |
+
dic = state.dict()
|
| 450 |
+
for i in range(len(dic['messages'])):
|
| 451 |
+
dic['messages'][i]['message'].pop('image_embeds')
|
| 452 |
+
print(dic)
|
| 453 |
data = {
|
| 454 |
"tstamp": round(time.time(), 4),
|
| 455 |
"type": vote_type,
|
| 456 |
+
"state": dic,
|
| 457 |
"ip": request.client.host,
|
| 458 |
}
|
| 459 |
fout.write(json.dumps(data) + "\n")
|
|
|
|
| 489 |
|
| 490 |
|
| 491 |
def init_input_state():
|
| 492 |
+
return {'images': [], 'text': '', 'image_embeds': []}
|
| 493 |
|
| 494 |
|
| 495 |
def add_text(dialog_state, input_state, text, request: gr.Request):
|
|
|
|
| 523 |
|
| 524 |
print('image size:', image.size)
|
| 525 |
|
| 526 |
+
# image = center_crop_image(image, max_aspect_ratio=10)
|
| 527 |
|
| 528 |
image_dir = get_conv_image_dir()
|
| 529 |
image_path = get_image_name(image=image, image_dir=image_dir)
|
| 530 |
if not os.path.exists(image_path):
|
| 531 |
image.save(image_path)
|
| 532 |
input_state['images'].append(image_path)
|
| 533 |
+
image_tensor = service.image_transform(image).unsqueeze(0).to(service.llm_device, dtype=service.dtype)
|
| 534 |
+
image_embeds = service.visual_encoder(image_tensor).detach().clone()
|
| 535 |
+
image_embeds = image_embeds.to(service.llm_device)
|
| 536 |
+
input_state['image_embeds'].append(image_embeds)
|
| 537 |
input_state['text'] += IMG_FLAG
|
| 538 |
|
| 539 |
if len(dialog_state.messages) > 0 and dialog_state.messages[-1]['role'] == dialog_state.roles[0]:
|
|
|
|
| 566 |
# SEED-Story
|
| 567 |
[[Paper]](https://arxiv.org/abs/2407.08683) [[Code]](https://github.com/TencentARC/SEED-Story)
|
| 568 |
|
| 569 |
+
Demo of the multimodal story generation model SEED-Story-George. It is trained on StoryStream-Curious George subset.
|
| 570 |
SEED-Story is a MLLM capable of generating multimodal long stories consisting of rich and coherent narrative texts, along with images that are consistent in characters and style.
|
| 571 |
|
| 572 |
## Tips:
|
| 573 |
* Check out the conversation examples (at the bottom) for inspiration.
|
| 574 |
+
* Our demo requires a mix of an image and a starting sentence as input. You can freely upload an image or enter text, and then click on "Submit". Then, The model generates the next story image and text.
|
| 575 |
+
* You can click on "Continue Generation" to make the model generate a next story image and text based on all previous story boards.
|
|
|
|
| 576 |
* SEED-Story was trained with English-only data. It may process with other languages due to the inherent capabilities from LLaMA, but might not stable.
|
| 577 |
""")
|
| 578 |
|
|
|
|
| 594 |
position: absolute;
|
| 595 |
top: -10px;
|
| 596 |
left: 0;
|
| 597 |
+
height: auto;
|
| 598 |
width: 100%;
|
| 599 |
background-color: rgb(230, 230, 230);
|
| 600 |
border: 2px dotted rgb(200, 200, 200);
|
|
|
|
| 618 |
|
| 619 |
if __name__ == '__main__':
|
| 620 |
examples_mix = [
|
| 621 |
+
['https://github.com/TencentARC/SEED-Story/blob/master/assets/demo_examples/2.jpg?raw=true',
|
| 622 |
+
'One day, George, the curious brown monkey, decided to explore a new room. He peeked out from behind a dresser, looking both curious and cautious. The dresser had three drawers, each with a round handle. An electrical outlet was visible on the wall.'],
|
| 623 |
+
['https://github.com/TencentARC/SEED-Story/blob/master/assets/demo_examples/4.jpg?raw=true',
|
| 624 |
+
'In the bustling city, a beautiful blue and yellow bird took flight, soaring high above the buildings. Among the clouds, a heart-shaped formation appeared, as if nature was sending a love note to the world below. Other birds joined, their silhouettes dancing in the distance.'],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 625 |
]
|
| 626 |
with gr.Blocks(css=css) as demo:
|
| 627 |
gr.Markdown(title)
|
|
|
|
| 638 |
elem_id='textbox',
|
| 639 |
placeholder="Enter text and image, and press submit,", container=False)
|
| 640 |
with gr.Row():
|
| 641 |
+
# add_image_btn = gr.Button("Add Image")
|
| 642 |
+
# add_text_btn = gr.Button("Add Text")
|
|
|
|
| 643 |
submit_btn = gr.Button("Submit")
|
| 644 |
+
continue_btn = gr.Button("Continue Generation")
|
| 645 |
|
| 646 |
with gr.Row():
|
| 647 |
max_new_tokens = gr.Slider(minimum=64,
|
|
|
|
| 650 |
step=64,
|
| 651 |
interactive=True,
|
| 652 |
label="Max Output Tokens")
|
| 653 |
+
max_length = gr.Slider(minimum=1, maximum=30, value=10, step=1, interactive=True,
|
| 654 |
+
label="Max Story Length")
|
|
|
|
|
|
|
|
|
|
| 655 |
|
| 656 |
with gr.Column(scale=7):
|
| 657 |
+
chatbot = gr.Chatbot(elem_id='chatbot', label="SEED-Story", height=700)
|
| 658 |
with gr.Row():
|
| 659 |
upvote_btn = gr.Button(value="π Upvote", interactive=False)
|
| 660 |
downvote_btn = gr.Button(value="π Downvote", interactive=False)
|
|
|
|
| 662 |
clear_btn = gr.Button(value="ποΈ Clear history", interactive=False)
|
| 663 |
|
| 664 |
with gr.Row():
|
| 665 |
+
with gr.Column(scale=1.0):
|
| 666 |
gr.Examples(examples=examples_mix, label='Input examples', inputs=[image, text], cache_examples=False)
|
|
|
|
|
|
|
| 667 |
|
| 668 |
# Register listeners
|
| 669 |
btn_list = [upvote_btn, downvote_btn, regenerate_btn, clear_btn]
|
|
|
|
| 671 |
downvote_btn.click(downvote_last_response, [dialog_state], [upvote_btn, downvote_btn])
|
| 672 |
|
| 673 |
regenerate_btn.click(regenerate, [dialog_state], [dialog_state, chatbot] + btn_list).then(
|
| 674 |
+
http_bot, [dialog_state, input_state, max_new_tokens, max_length],
|
| 675 |
[dialog_state, input_state, chatbot] + btn_list)
|
| 676 |
+
# add_image_btn.click(add_image, [dialog_state, input_state, image],
|
| 677 |
+
# [dialog_state, input_state, image, chatbot] + btn_list)
|
| 678 |
+
#
|
| 679 |
+
# add_text_btn.click(add_text, [dialog_state, input_state, text],
|
| 680 |
+
# [dialog_state, input_state, text, chatbot] + btn_list)
|
| 681 |
|
| 682 |
submit_btn.click(
|
|
|
|
| 683 |
add_text, [dialog_state, input_state, text],
|
| 684 |
[dialog_state, input_state, text, chatbot, upvote_btn, downvote_btn, regenerate_btn, clear_btn]).then(
|
| 685 |
+
add_image, [dialog_state, input_state, image],
|
| 686 |
+
[dialog_state, input_state, image, chatbot] + btn_list).then(
|
| 687 |
+
http_bot,
|
| 688 |
+
[dialog_state, input_state, max_new_tokens, max_length],
|
| 689 |
+
[dialog_state, input_state, chatbot] + btn_list)
|
| 690 |
+
continue_btn.click(
|
| 691 |
http_bot,
|
| 692 |
+
[dialog_state, input_state, max_new_tokens, max_length],
|
| 693 |
[dialog_state, input_state, chatbot] + btn_list)
|
| 694 |
clear_btn.click(clear_history, None, [dialog_state, input_state, chatbot] + btn_list)
|
| 695 |
|
configs/visual_tokenizer/qwen_vitg_448.yaml
CHANGED
|
@@ -7,4 +7,4 @@ mlp_ratio: 4.9231
|
|
| 7 |
output_dim: 4096
|
| 8 |
patch_size: 14
|
| 9 |
width: 1664
|
| 10 |
-
pretrained_model_path:
|
|
|
|
| 7 |
output_dim: 4096
|
| 8 |
patch_size: 14
|
| 9 |
width: 1664
|
| 10 |
+
pretrained_model_path: pretrained/qwen_vit_G.pt
|
conversation.py
CHANGED
|
@@ -49,7 +49,8 @@ class Conversation:
|
|
| 49 |
skip_next: bool = False
|
| 50 |
|
| 51 |
def get_prompt(self):
|
| 52 |
-
messages =
|
|
|
|
| 53 |
if self.sep_style == SeparatorStyle.SINGLE:
|
| 54 |
if self.system is None or self.system == '':
|
| 55 |
text = ''
|
|
@@ -65,28 +66,28 @@ class Conversation:
|
|
| 65 |
|
| 66 |
text += self.roles[1] + ":"
|
| 67 |
elif self.sep_style == SeparatorStyle.LLAMA_2:
|
| 68 |
-
b_token = "[INST] "
|
| 69 |
-
e_token = " [/INST]"
|
| 70 |
if self.system is None or self.system == '':
|
| 71 |
text = ''
|
| 72 |
else:
|
| 73 |
text = f"<<SYS>>\n{self.system}\n<</SYS>>\n\n"
|
| 74 |
images = []
|
|
|
|
| 75 |
for idx, message in enumerate(messages):
|
| 76 |
-
|
| 77 |
-
if idx % 2 == 0:
|
| 78 |
-
text += b_token + message['message']['text'] + e_token + self.sep
|
| 79 |
-
else:
|
| 80 |
-
text += message['message']['text'] + self.sep
|
| 81 |
|
| 82 |
for image_path in message['message']['images']:
|
| 83 |
-
image = Image.open(image_path)
|
| 84 |
image_base64 = encode_image(image)
|
| 85 |
images.append(image_base64)
|
|
|
|
|
|
|
|
|
|
| 86 |
else:
|
| 87 |
raise NotImplementedError
|
| 88 |
|
| 89 |
-
return {'text': text, 'images': images}
|
| 90 |
|
| 91 |
# def update_image_ids(self, images_ids):
|
| 92 |
# image_count = 0
|
|
@@ -106,6 +107,7 @@ class Conversation:
|
|
| 106 |
for i, single_turn in enumerate(self.messages[self.offset:]):
|
| 107 |
single_turn = single_turn['message']
|
| 108 |
text_list = single_turn['text'].split(IMG_FLAG)
|
|
|
|
| 109 |
assert len(text_list) == len(single_turn['images']) + 1, print(text_list, len(single_turn['images']))
|
| 110 |
message = ''
|
| 111 |
for image_idx in range(len(single_turn['images'])):
|
|
|
|
| 49 |
skip_next: bool = False
|
| 50 |
|
| 51 |
def get_prompt(self):
|
| 52 |
+
messages = self.messages
|
| 53 |
+
# messages = copy.deepcopy(self.messages)
|
| 54 |
if self.sep_style == SeparatorStyle.SINGLE:
|
| 55 |
if self.system is None or self.system == '':
|
| 56 |
text = ''
|
|
|
|
| 66 |
|
| 67 |
text += self.roles[1] + ":"
|
| 68 |
elif self.sep_style == SeparatorStyle.LLAMA_2:
|
| 69 |
+
# b_token = "[INST] "
|
| 70 |
+
# e_token = " [/INST]"
|
| 71 |
if self.system is None or self.system == '':
|
| 72 |
text = ''
|
| 73 |
else:
|
| 74 |
text = f"<<SYS>>\n{self.system}\n<</SYS>>\n\n"
|
| 75 |
images = []
|
| 76 |
+
image_embeds = []
|
| 77 |
for idx, message in enumerate(messages):
|
| 78 |
+
text += message['message']['text']
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
for image_path in message['message']['images']:
|
| 81 |
+
image = Image.open(image_path).convert('RGB')
|
| 82 |
image_base64 = encode_image(image)
|
| 83 |
images.append(image_base64)
|
| 84 |
+
image_embeds.extend(message['message']['image_embeds'])
|
| 85 |
+
|
| 86 |
+
|
| 87 |
else:
|
| 88 |
raise NotImplementedError
|
| 89 |
|
| 90 |
+
return {'text': text, 'images': images, 'image_embeds': image_embeds}
|
| 91 |
|
| 92 |
# def update_image_ids(self, images_ids):
|
| 93 |
# image_count = 0
|
|
|
|
| 107 |
for i, single_turn in enumerate(self.messages[self.offset:]):
|
| 108 |
single_turn = single_turn['message']
|
| 109 |
text_list = single_turn['text'].split(IMG_FLAG)
|
| 110 |
+
print(text_list, len(single_turn['images']))
|
| 111 |
assert len(text_list) == len(single_turn['images']) + 1, print(text_list, len(single_turn['images']))
|
| 112 |
message = ''
|
| 113 |
for image_idx in range(len(single_turn['images'])):
|
pretrained/seed_story/george_sft/pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 14709979626
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c7e46794a2aab38f3f59484a4f4bb4c839217ef17c4329977b0a11839f462b94
|
| 3 |
size 14709979626
|