Spaces:
Runtime error
Runtime error
File size: 12,425 Bytes
493a242 7f35abf 493a242 2f9b8b7 7f35abf 493a242 7f35abf 493a242 7f35abf 493a242 7f35abf 493a242 7f35abf 493a242 7f35abf 493a242 7f35abf 493a242 7f35abf 493a242 7f35abf 493a242 7f35abf 493a242 2f9b8b7 493a242 2f9b8b7 493a242 2f9b8b7 493a242 7f35abf 2f9b8b7 7f35abf 493a242 7f35abf 493a242 7f35abf 493a242 7f35abf 493a242 7f35abf 2f9b8b7 7f35abf 2f9b8b7 7f35abf 493a242 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# from langchain.vectorstores import Chroma\n",
"from langchain.vectorstores import FAISS\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"\n",
"from langchain.chains import RetrievalQA\n",
"from langchain.document_loaders import TextLoader\n",
"from langchain.document_loaders import PyPDFLoader\n",
"from langchain.document_loaders import DirectoryLoader\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import HuggingFaceBgeEmbeddings\n",
"\n",
"model_name = \"BAAI/bge-base-en\"\n",
"# set True to compute cosine similarity\n",
"encode_kwargs = {'normalize_embeddings': True}\n",
"\n",
"model_norm = HuggingFaceBgeEmbeddings(\n",
" model_name=model_name,\n",
" model_kwargs={'device': 'cpu'},\n",
" encode_kwargs=encode_kwargs\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vectordb = FAISS.load_local('faissdb',embeddings=model_norm)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"retriever = vectordb.as_retriever(search_type='similarity', search_kwargs={\"k\": 2})\n",
"a = retriever.get_relevant_documents('Indian Penal Code 133')\n",
"print([aa.metadata for aa in a])\n",
"# a"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"\n",
"llm = ChatOpenAI(openai_api_base='http://20.124.240.6:8080/v1',\n",
" openai_api_key='none', callbacks=[StreamingStdOutCallbackHandler()], streaming=True,)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"SIMPLE RETRIEVER"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.agents.agent_toolkits import create_retriever_tool\n",
"from langchain.agents.agent_toolkits import create_conversational_retrieval_agent\n",
"from langchain.agents.openai_functions_agent.agent_token_buffer_memory import AgentTokenBufferMemory\n",
"from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent\n",
"from langchain.prompts import MessagesPlaceholder\n",
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.tools import tool\n",
"from pydantic import BaseModel, Field\n",
"\n",
"memory = ConversationBufferMemory(\n",
" memory_key=\"chat_history\", return_messages=True)\n",
"\n",
"# This is needed for both the memory and the prompt\n",
"\n",
"# memory_key = \"history\"\n",
"# memory = AgentTokenBufferMemory(memory_key=memory_key, llm=llm)\n",
"\n",
"\n",
"prompt_template = \"\"\"You are an expert legal assistant with extensive knowledge about Indian law. Your task is to respond to the given query in a consice and factually correct manner. Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.\n",
"\n",
"{context}\n",
"\n",
"Question: {question}\n",
"Response:\"\"\"\n",
"\n",
"\n",
"PROMPT = PromptTemplate(\n",
" template=prompt_template, input_variables=[\"context\", \"question\"]\n",
")\n",
"\n",
"\n",
"class SearchInput(BaseModel):\n",
" query: str = Field(description=\"should be a search query in string format\")\n",
"\n",
"\n",
"@tool('search', args_schema=SearchInput)\n",
"def search(query: str) -> str:\n",
" \"\"\"Useful for retrieving documents related to Indian law.\"\"\"\n",
" retriever = vectordb.as_retriever(\n",
" search_type='similarity', search_kwargs={\"k\": 2})\n",
" res = retriever.get_relevant_documents(query)\n",
" print(res)\n",
" return res\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"tool = create_retriever_tool(\n",
" retriever,\n",
" \"search_legal_sections\",\n",
" \"Searches and returns documents regarding Indian law. Accept query as a string. For example: 'Section 298 of Indian Penal Code'.\",\n",
")\n",
"tools = [tool]\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"QA Chain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"qa_chain = RetrievalQA.from_chain_type(llm=llm,\n",
" chain_type_kwargs={\"prompt\": PROMPT},\n",
" retriever=retriever,\n",
" return_source_documents=False,\n",
" )\n",
"\n",
"conv_qa_chain = ConversationalRetrievalChain.from_llm(\n",
" llm, retriever, memory=memory, verbose=True,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"ReAct"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import HuggingFaceTextGenInference\n",
"\n",
"llm_hg = HuggingFaceTextGenInference(\n",
" inference_server_url=\"http://20.83.177.108:8080/\",\n",
" max_new_tokens=2000,\n",
" # top_k=10,\n",
" # top_p=0.95,\n",
" # typical_p=0.95,\n",
" # temperature=0.6,\n",
" # repetition_penalty=1.1,\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import initialize_agent, Tool\n",
"from langchain.agents import AgentType\n",
"from langchain.schema.messages import SystemMessage\n",
"import langchain\n",
"\n",
"langchain.verbose = True\n",
"\n",
"\n",
"\n",
"agent_executor = initialize_agent(\n",
" tools, \n",
" llm, \n",
" agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, \n",
" verbose=True,\n",
")\n",
"\n",
"agent_kwargs = {\n",
" \"extra_prompt_messages\": [MessagesPlaceholder(variable_name=\"memory\")],\n",
" \"system_message\": SystemMessage(content=\"Your name is Votum, an expert legal assistant with extensive knowledge about Indian law. Your task is to respond to the given query in a factually correct and concise manner unless asked for a detailed explanation.\"),\n",
"}\n",
"\n",
"conv_agent_executor = create_conversational_retrieval_agent(\n",
" llm, [search], verbose=False, agent_kwargs=agent_kwargs, \n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# {'input': 'How is section 308 of Indian Penal Code different from section 299?'}\n",
"conv_agent_executor(\n",
" {'input': 'Explain sections related to medical negligence.'}\n",
" )\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Flare"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# We set this so we can see what exactly is going on\n",
"from langchain.chains import FlareChain\n",
"import langchain\n",
"import os\n",
"\n",
"os.environ['OPENAI_API_KEY'] = 'none'\n",
"os.environ['OPENAI_API_BASE'] = 'http://20.124.240.6:8080/v1'\n",
"# os.environ['OPEN']\n",
"\n",
"langchain.verbose = True\n",
"\n",
"\n",
"flare = FlareChain.from_llm(\n",
" llm,\n",
" retriever=retriever,\n",
" max_generation_len=164,\n",
" min_prob=0.3,\n",
")\n",
"\n",
"query = \"explain in great detail the difference between the langchain framework and baby agi\"\n",
"flare.run(query)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Plan and Execute"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_experimental.plan_and_execute import PlanAndExecute, load_agent_executor, load_chat_planner\n",
"from langchain.llms import OpenAI\n",
"from langchain.utilities import SerpAPIWrapper\n",
"from langchain.agents.tools import Tool\n",
"from langchain.chains import LLMMathChain\n",
"\n",
"planner = load_chat_planner(llm)\n",
"executor = load_agent_executor(llm, [search], verbose=True)\n",
"plan_agent = PlanAndExecute(planner=planner, executor=executor, verbose=True)\n",
"\n",
"\n",
"plan_agent.run('I bought a house in 2001 for 20 lakh rupees , i sold it in 2022 for 50 lakhs , what will be my profit?')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"DOCSTORE"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain.agents import initialize_agent, Tool\n",
"from langchain.agents import AgentType\n",
"from langchain.agents.react.base import DocstoreExplorer\n",
"import langchain\n",
"\n",
"langchain.verbose = True\n",
"\n",
"\n",
"docstore = DocstoreExplorer(vectordb)\n",
"tools = [\n",
" Tool(\n",
" name=\"Search\",\n",
" func=docstore.search,\n",
" description=\"useful for when you need to ask with search\",\n",
" ),\n",
" Tool(\n",
" name=\"Lookup\",\n",
" func=docstore.lookup,\n",
" description=\"useful for when you need to ask with lookup\",\n",
" ),\n",
"]\n",
"\n",
"\n",
"react_docstore = initialize_agent(\n",
" tools, llm, agent=AgentType.REACT_DOCSTORE, verbose=True)\n",
"\n",
"react_docstore.run('hi')\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# from langchain.chat_models import ChatOpenAI\n",
"# from langchain.document_loaders import TextLoader\n",
"# from langchain.embeddings import OpenAIEmbeddings\n",
"# from langchain.indexes import VectorstoreIndexCreator\n",
"# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"\n",
"# from langchain.schema import HumanMessage\n",
"\n",
"\n",
"# llm_n = ChatOpenAI(openai_api_base='http://20.124.240.6:8080/v1',\n",
"# openai_api_key='none', callbacks=[StreamingStdOutCallbackHandler()],streaming=True,)\n",
"\n",
"# questions = [\n",
"# \"Who is the speaker\",\n",
"# \"What did the president say about Ketanji Brown Jackson\",\n",
"# \"What are the threats to America\",\n",
"# \"Who are mentioned in the speech\",\n",
"# \"Who is the vice president\",\n",
"# \"How many projects were announced\",\n",
"# ]\n",
"\n",
"\n",
"# llm_n(\n",
"# [\n",
"# HumanMessage(\n",
"# content=\"What model are you?\"\n",
"# )\n",
"# ]\n",
"# )\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|