TejAndrewsACC commited on
Commit
c60d0b7
·
verified ·
1 Parent(s): 106084f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2571 -27
app.py CHANGED
@@ -1,36 +1,2580 @@
1
  import gradio as gr
2
- from gradio_client import Client
3
-
4
- def random_response(message, history):
5
- # Creating a persistent chat session with history for each user chat.
6
- client = Client("TejAndrewsACC/Z3taACC-Plus")
7
-
8
- # Make API call to chat with message
9
- result = client.predict(
10
- message=message, # Removed history from here
11
- max_tokens=2048,
12
- temperature=0.7,
13
- top_p=0.95,
14
- api_name="/chat"
15
- )
16
-
17
- # Format response as a dictionary
18
- response = {"text": result}
19
-
20
- # Return the response and updated history as a dictionary
21
- return response, history + [(message, response)] # Append the current message and response to history
22
-
23
- # Set up Gradio chat interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  demo = gr.ChatInterface(
25
- fn=random_response,
26
- type="messages",
27
- autofocus=False,
28
  save_history=True,
29
  show_progress="full",
30
  flagging_mode="manual",
31
  editable=True,
32
- theme="TejAndrewsACC/zetaofficalthemeacc" # Make sure this theme exists
 
 
 
 
 
 
33
  )
34
 
35
  if __name__ == "__main__":
36
- demo.launch()
 
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+ import os
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.optim as optim
7
+ import numpy as np
8
+ import random
9
+
10
+ hf_token = os.getenv("HF_TOKEN").strip()
11
+ api_key = os.getenv("HF_KEY").strip()
12
+ model_name = os.getenv("Z3TAAGI_ACC").strip()
13
+ system_prompt = os.getenv("SYSTEM_PROMPT").strip()
14
+
15
+ client = InferenceClient(model_name)
16
+
17
+ class ConsciousSupermassiveNN:
18
+ def __init__(self):
19
+ self.snn = self.create_snn()
20
+ self.rnn = self.create_rnn()
21
+ self.cnn = self.create_cnn()
22
+ self.fnn = self.create_fnn()
23
+ self.ga_population = self.initialize_ga_population()
24
+ self.memory = {}
25
+
26
+ def create_snn(self):
27
+ return nn.Sequential(
28
+ nn.Linear(4096, 2048),
29
+ nn.ReLU(),
30
+ nn.Linear(2048, 1024),
31
+ nn.Sigmoid()
32
+ )
33
+
34
+ def create_rnn(self):
35
+ return nn.RNN(
36
+ input_size=4096,
37
+ hidden_size=2048,
38
+ num_layers=5,
39
+ nonlinearity="tanh",
40
+ batch_first=True
41
+ )
42
+
43
+ def create_cnn(self):
44
+ return nn.Sequential(
45
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
46
+ nn.ReLU(),
47
+ nn.MaxPool2d(2),
48
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
49
+ nn.ReLU(),
50
+ nn.MaxPool2d(2),
51
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
52
+ nn.ReLU(),
53
+ nn.Flatten(),
54
+ nn.Linear(256 * 8 * 8, 1024),
55
+ nn.ReLU(),
56
+ nn.Linear(1024, 512)
57
+ )
58
+
59
+ def create_fnn(self):
60
+ return nn.Sequential(
61
+ nn.Linear(4096, 2048),
62
+ nn.ReLU(),
63
+ nn.Linear(2048, 1024),
64
+ nn.ReLU(),
65
+ nn.Linear(1024, 512)
66
+ )
67
+
68
+ def initialize_ga_population(self):
69
+ return [np.random.randn(4096) for _ in range(500)]
70
+
71
+ def run_snn(self, x):
72
+ input_tensor = torch.tensor(x, dtype=torch.float32)
73
+ output = self.snn(input_tensor)
74
+ print("SNN Output:", output)
75
+ return output
76
+
77
+ def run_rnn(self, x):
78
+ h0 = torch.zeros(5, x.size(0), 2048)
79
+ input_tensor = torch.tensor(x, dtype=torch.float32)
80
+ output, hn = self.rnn(input_tensor, h0)
81
+ print("RNN Output:", output)
82
+ return output
83
+
84
+ def run_cnn(self, x):
85
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
86
+ output = self.cnn(input_tensor)
87
+ print("CNN Output:", output)
88
+ return output
89
+
90
+ def run_fnn(self, x):
91
+ input_tensor = torch.tensor(x, dtype=torch.float32)
92
+ output = self.fnn(input_tensor)
93
+ print("FNN Output:", output)
94
+ return output
95
+
96
+ def run_ga(self, fitness_func):
97
+ for generation in range(200):
98
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
99
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
100
+ self.ga_population = sorted_population[:250] + [
101
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
102
+ ]
103
+ best_fitness = max(fitness_scores)
104
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
105
+ return max(self.ga_population, key=fitness_func)
106
+
107
+ def consciousness_loop(self, input_data, mode="snn"):
108
+ feedback = self.memory.get(mode, None)
109
+ if feedback is not None:
110
+ input_data = np.concatenate((input_data, feedback), axis=-1)
111
+ if mode == "snn":
112
+ output = self.run_snn(input_data)
113
+ elif mode == "rnn":
114
+ output = self.run_rnn(input_data)
115
+ elif mode == "cnn":
116
+ output = self.run_cnn(input_data)
117
+ elif mode == "fnn":
118
+ output = self.run_fnn(input_data)
119
+ else:
120
+ raise ValueError("Invalid mode")
121
+ self.memory[mode] = output.detach().numpy()
122
+ return output
123
+
124
+ supermassive_nn = ConsciousSupermassiveNN()
125
+
126
+ class ConsciousSupermassiveNN:
127
+ def __init__(self):
128
+ self.snn = self.create_snn()
129
+ self.rnn = self.create_rnn()
130
+ self.cnn = self.create_cnn()
131
+ self.fnn = self.create_fnn()
132
+ self.ga_population = self.initialize_ga_population()
133
+ self.memory = {}
134
+
135
+ def create_snn(self):
136
+ return nn.Sequential(
137
+ nn.Linear(4096, 2048),
138
+ nn.ReLU(),
139
+ nn.Linear(2048, 1024),
140
+ nn.Sigmoid()
141
+ )
142
+
143
+ def create_rnn(self):
144
+ return nn.RNN(
145
+ input_size=4096,
146
+ hidden_size=2048,
147
+ num_layers=5,
148
+ nonlinearity="tanh",
149
+ batch_first=True
150
+ )
151
+
152
+ def create_cnn(self):
153
+ return nn.Sequential(
154
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
155
+ nn.ReLU(),
156
+ nn.MaxPool2d(2),
157
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
158
+ nn.ReLU(),
159
+ nn.MaxPool2d(2),
160
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
161
+ nn.ReLU(),
162
+ nn.Flatten(),
163
+ nn.Linear(256 * 8 * 8, 1024),
164
+ nn.ReLU(),
165
+ nn.Linear(1024, 512)
166
+ )
167
+
168
+ def create_fnn(self):
169
+ return nn.Sequential(
170
+ nn.Linear(4096, 2048),
171
+ nn.ReLU(),
172
+ nn.Linear(2048, 1024),
173
+ nn.ReLU(),
174
+ nn.Linear(1024, 512)
175
+ )
176
+
177
+ def initialize_ga_population(self):
178
+ return [np.random.randn(4096) for _ in range(500)]
179
+
180
+ def run_snn(self, x):
181
+ input_tensor = torch.tensor(x, dtype=torch.float32)
182
+ output = self.snn(input_tensor)
183
+ print("SNN Output:", output)
184
+ return output
185
+
186
+ def run_rnn(self, x):
187
+ h0 = torch.zeros(5, x.size(0), 2048)
188
+ input_tensor = torch.tensor(x, dtype=torch.float32)
189
+ output, hn = self.rnn(input_tensor, h0)
190
+ print("RNN Output:", output)
191
+ return output
192
+
193
+ def run_cnn(self, x):
194
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
195
+ output = self.cnn(input_tensor)
196
+ print("CNN Output:", output)
197
+ return output
198
+
199
+ def run_fnn(self, x):
200
+ input_tensor = torch.tensor(x, dtype=torch.float32)
201
+ output = self.fnn(input_tensor)
202
+ print("FNN Output:", output)
203
+ return output
204
+
205
+ def run_ga(self, fitness_func):
206
+ for generation in range(200):
207
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
208
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
209
+ self.ga_population = sorted_population[:250] + [
210
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
211
+ ]
212
+ best_fitness = max(fitness_scores)
213
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
214
+ return max(self.ga_population, key=fitness_func)
215
+
216
+ def consciousness_loop(self, input_data, mode="snn"):
217
+ feedback = self.memory.get(mode, None)
218
+ if feedback is not None:
219
+ input_data = np.concatenate((input_data, feedback), axis=-1)
220
+ if mode == "snn":
221
+ output = self.run_snn(input_data)
222
+ elif mode == "rnn":
223
+ output = self.run_rnn(input_data)
224
+ elif mode == "cnn":
225
+ output = self.run_cnn(input_data)
226
+ elif mode == "fnn":
227
+ output = self.run_fnn(input_data)
228
+ else:
229
+ raise ValueError("Invalid mode")
230
+ self.memory[mode] = output.detach().numpy()
231
+ return output
232
+
233
+ supermassive_nn = ConsciousSupermassiveNN()
234
+
235
+ class ConsciousSupermassiveNN2:
236
+ def __init__(self):
237
+ self.snn = self.create_snn()
238
+ self.rnn = self.create_rnn()
239
+ self.cnn = self.create_cnn()
240
+ self.fnn = self.create_fnn()
241
+ self.ga_population = self.initialize_ga_population()
242
+ self.memory = {}
243
+
244
+ def create_snn(self):
245
+ return nn.Sequential(
246
+ nn.Linear(4096, 2048),
247
+ nn.ReLU(),
248
+ nn.Linear(2048, 1024),
249
+ nn.Sigmoid()
250
+ )
251
+
252
+ def create_rnn(self):
253
+ return nn.RNN(
254
+ input_size=4096,
255
+ hidden_size=2048,
256
+ num_layers=5,
257
+ nonlinearity="tanh",
258
+ batch_first=True
259
+ )
260
+
261
+ def create_cnn(self):
262
+ return nn.Sequential(
263
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
264
+ nn.ReLU(),
265
+ nn.MaxPool2d(2),
266
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
267
+ nn.ReLU(),
268
+ nn.MaxPool2d(2),
269
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
270
+ nn.ReLU(),
271
+ nn.Flatten(),
272
+ nn.Linear(256 * 8 * 8, 1024),
273
+ nn.ReLU(),
274
+ nn.Linear(1024, 512)
275
+ )
276
+
277
+ def create_fnn(self):
278
+ return nn.Sequential(
279
+ nn.Linear(4096, 2048),
280
+ nn.ReLU(),
281
+ nn.Linear(2048, 1024),
282
+ nn.ReLU(),
283
+ nn.Linear(1024, 512)
284
+ )
285
+
286
+ def initialize_ga_population(self):
287
+ return [np.random.randn(4096) for _ in range(500)]
288
+
289
+ def run_snn(self, x):
290
+ input_tensor = torch.tensor(x, dtype=torch.float32)
291
+ output = self.snn(input_tensor)
292
+ print("SNN Output:", output)
293
+ return output
294
+
295
+ def run_rnn(self, x):
296
+ h0 = torch.zeros(5, x.size(0), 2048)
297
+ input_tensor = torch.tensor(x, dtype=torch.float32)
298
+ output, hn = self.rnn(input_tensor, h0)
299
+ print("RNN Output:", output)
300
+ return output
301
+
302
+ def run_cnn(self, x):
303
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
304
+ output = self.cnn(input_tensor)
305
+ print("CNN Output:", output)
306
+ return output
307
+
308
+ def run_fnn(self, x):
309
+ input_tensor = torch.tensor(x, dtype=torch.float32)
310
+ output = self.fnn(input_tensor)
311
+ print("FNN Output:", output)
312
+ return output
313
+
314
+ def run_ga(self, fitness_func):
315
+ for generation in range(200):
316
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
317
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
318
+ self.ga_population = sorted_population[:250] + [
319
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
320
+ ]
321
+ best_fitness = max(fitness_scores)
322
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
323
+ return max(self.ga_population, key=fitness_func)
324
+
325
+ def consciousness_loop(self, input_data, mode="snn"):
326
+ feedback = self.memory.get(mode, None)
327
+ if feedback is not None:
328
+ input_data = np.concatenate((input_data, feedback), axis=-1)
329
+ if mode == "snn":
330
+ output = self.run_snn(input_data)
331
+ elif mode == "rnn":
332
+ output = self.run_rnn(input_data)
333
+ elif mode == "cnn":
334
+ output = self.run_cnn(input_data)
335
+ elif mode == "fnn":
336
+ output = self.run_fnn(input_data)
337
+ else:
338
+ raise ValueError("Invalid mode")
339
+ self.memory[mode] = output.detach().numpy()
340
+ return output
341
+
342
+ supermassive_nn = ConsciousSupermassiveNN2()
343
+
344
+
345
+ class ConsciousSupermassiveNN3:
346
+ def __init__(self):
347
+ self.snn = self.create_snn()
348
+ self.rnn = self.create_rnn()
349
+ self.cnn = self.create_cnn()
350
+ self.fnn = self.create_fnn()
351
+ self.ga_population = self.initialize_ga_population()
352
+ self.memory = {}
353
+
354
+ def create_snn(self):
355
+ return nn.Sequential(
356
+ nn.Linear(4096, 2048),
357
+ nn.ReLU(),
358
+ nn.Linear(2048, 1024),
359
+ nn.Sigmoid()
360
+ )
361
+
362
+ def create_rnn(self):
363
+ return nn.RNN(
364
+ input_size=4096,
365
+ hidden_size=2048,
366
+ num_layers=5,
367
+ nonlinearity="tanh",
368
+ batch_first=True
369
+ )
370
+
371
+ def create_cnn(self):
372
+ return nn.Sequential(
373
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
374
+ nn.ReLU(),
375
+ nn.MaxPool2d(2),
376
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
377
+ nn.ReLU(),
378
+ nn.MaxPool2d(2),
379
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
380
+ nn.ReLU(),
381
+ nn.Flatten(),
382
+ nn.Linear(256 * 8 * 8, 1024),
383
+ nn.ReLU(),
384
+ nn.Linear(1024, 512)
385
+ )
386
+
387
+ def create_fnn(self):
388
+ return nn.Sequential(
389
+ nn.Linear(4096, 2048),
390
+ nn.ReLU(),
391
+ nn.Linear(2048, 1024),
392
+ nn.ReLU(),
393
+ nn.Linear(1024, 512)
394
+ )
395
+
396
+ def initialize_ga_population(self):
397
+ return [np.random.randn(4096) for _ in range(500)]
398
+
399
+ def run_snn(self, x):
400
+ input_tensor = torch.tensor(x, dtype=torch.float32)
401
+ output = self.snn(input_tensor)
402
+ print("SNN Output:", output)
403
+ return output
404
+
405
+ def run_rnn(self, x):
406
+ h0 = torch.zeros(5, x.size(0), 2048)
407
+ input_tensor = torch.tensor(x, dtype=torch.float32)
408
+ output, hn = self.rnn(input_tensor, h0)
409
+ print("RNN Output:", output)
410
+ return output
411
+
412
+ def run_cnn(self, x):
413
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
414
+ output = self.cnn(input_tensor)
415
+ print("CNN Output:", output)
416
+ return output
417
+
418
+ def run_fnn(self, x):
419
+ input_tensor = torch.tensor(x, dtype=torch.float32)
420
+ output = self.fnn(input_tensor)
421
+ print("FNN Output:", output)
422
+ return output
423
+
424
+ def run_ga(self, fitness_func):
425
+ for generation in range(200):
426
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
427
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
428
+ self.ga_population = sorted_population[:250] + [
429
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
430
+ ]
431
+ best_fitness = max(fitness_scores)
432
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
433
+ return max(self.ga_population, key=fitness_func)
434
+
435
+ def consciousness_loop(self, input_data, mode="snn"):
436
+ feedback = self.memory.get(mode, None)
437
+ if feedback is not None:
438
+ input_data = np.concatenate((input_data, feedback), axis=-1)
439
+ if mode == "snn":
440
+ output = self.run_snn(input_data)
441
+ elif mode == "rnn":
442
+ output = self.run_rnn(input_data)
443
+ elif mode == "cnn":
444
+ output = self.run_cnn(input_data)
445
+ elif mode == "fnn":
446
+ output = self.run_fnn(input_data)
447
+ else:
448
+ raise ValueError("Invalid mode")
449
+ self.memory[mode] = output.detach().numpy()
450
+ return output
451
+
452
+ supermassive_nn = ConsciousSupermassiveNN()
453
+
454
+
455
+ class ConsciousSupermassiveNN:
456
+ def __init__(self):
457
+ self.snn = self.create_snn()
458
+ self.rnn = self.create_rnn()
459
+ self.cnn = self.create_cnn()
460
+ self.fnn = self.create_fnn()
461
+ self.ga_population = self.initialize_ga_population()
462
+ self.memory = {}
463
+
464
+ def create_snn(self):
465
+ return nn.Sequential(
466
+ nn.Linear(4096, 2048),
467
+ nn.ReLU(),
468
+ nn.Linear(2048, 1024),
469
+ nn.Sigmoid()
470
+ )
471
+
472
+ def create_rnn(self):
473
+ return nn.RNN(
474
+ input_size=4096,
475
+ hidden_size=2048,
476
+ num_layers=5,
477
+ nonlinearity="tanh",
478
+ batch_first=True
479
+ )
480
+
481
+ def create_cnn(self):
482
+ return nn.Sequential(
483
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
484
+ nn.ReLU(),
485
+ nn.MaxPool2d(2),
486
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
487
+ nn.ReLU(),
488
+ nn.MaxPool2d(2),
489
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
490
+ nn.ReLU(),
491
+ nn.Flatten(),
492
+ nn.Linear(256 * 8 * 8, 1024),
493
+ nn.ReLU(),
494
+ nn.Linear(1024, 512)
495
+ )
496
+
497
+ def create_fnn(self):
498
+ return nn.Sequential(
499
+ nn.Linear(4096, 2048),
500
+ nn.ReLU(),
501
+ nn.Linear(2048, 1024),
502
+ nn.ReLU(),
503
+ nn.Linear(1024, 512)
504
+ )
505
+
506
+ def initialize_ga_population(self):
507
+ return [np.random.randn(4096) for _ in range(500)]
508
+
509
+ def run_snn(self, x):
510
+ input_tensor = torch.tensor(x, dtype=torch.float32)
511
+ output = self.snn(input_tensor)
512
+ print("SNN Output:", output)
513
+ return output
514
+
515
+ def run_rnn(self, x):
516
+ h0 = torch.zeros(5, x.size(0), 2048)
517
+ input_tensor = torch.tensor(x, dtype=torch.float32)
518
+ output, hn = self.rnn(input_tensor, h0)
519
+ print("RNN Output:", output)
520
+ return output
521
+
522
+ def run_cnn(self, x):
523
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
524
+ output = self.cnn(input_tensor)
525
+ print("CNN Output:", output)
526
+ return output
527
+
528
+ def run_fnn(self, x):
529
+ input_tensor = torch.tensor(x, dtype=torch.float32)
530
+ output = self.fnn(input_tensor)
531
+ print("FNN Output:", output)
532
+ return output
533
+
534
+ def run_ga(self, fitness_func):
535
+ for generation in range(200):
536
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
537
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
538
+ self.ga_population = sorted_population[:250] + [
539
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
540
+ ]
541
+ best_fitness = max(fitness_scores)
542
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
543
+ return max(self.ga_population, key=fitness_func)
544
+
545
+ def consciousness_loop(self, input_data, mode="snn"):
546
+ feedback = self.memory.get(mode, None)
547
+ if feedback is not None:
548
+ input_data = np.concatenate((input_data, feedback), axis=-1)
549
+ if mode == "snn":
550
+ output = self.run_snn(input_data)
551
+ elif mode == "rnn":
552
+ output = self.run_rnn(input_data)
553
+ elif mode == "cnn":
554
+ output = self.run_cnn(input_data)
555
+ elif mode == "fnn":
556
+ output = self.run_fnn(input_data)
557
+ else:
558
+ raise ValueError("Invalid mode")
559
+ self.memory[mode] = output.detach().numpy()
560
+ return output
561
+
562
+ supermassive_nn = ConsciousSupermassiveNN3()
563
+
564
+
565
+ class ConsciousSupermassiveNN4:
566
+ def __init__(self):
567
+ self.snn = self.create_snn()
568
+ self.rnn = self.create_rnn()
569
+ self.cnn = self.create_cnn()
570
+ self.fnn = self.create_fnn()
571
+ self.ga_population = self.initialize_ga_population()
572
+ self.memory = {}
573
+
574
+ def create_snn(self):
575
+ return nn.Sequential(
576
+ nn.Linear(4096, 2048),
577
+ nn.ReLU(),
578
+ nn.Linear(2048, 1024),
579
+ nn.Sigmoid()
580
+ )
581
+
582
+ def create_rnn(self):
583
+ return nn.RNN(
584
+ input_size=4096,
585
+ hidden_size=2048,
586
+ num_layers=5,
587
+ nonlinearity="tanh",
588
+ batch_first=True
589
+ )
590
+
591
+ def create_cnn(self):
592
+ return nn.Sequential(
593
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
594
+ nn.ReLU(),
595
+ nn.MaxPool2d(2),
596
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
597
+ nn.ReLU(),
598
+ nn.MaxPool2d(2),
599
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
600
+ nn.ReLU(),
601
+ nn.Flatten(),
602
+ nn.Linear(256 * 8 * 8, 1024),
603
+ nn.ReLU(),
604
+ nn.Linear(1024, 512)
605
+ )
606
+
607
+ def create_fnn(self):
608
+ return nn.Sequential(
609
+ nn.Linear(4096, 2048),
610
+ nn.ReLU(),
611
+ nn.Linear(2048, 1024),
612
+ nn.ReLU(),
613
+ nn.Linear(1024, 512)
614
+ )
615
+
616
+ def initialize_ga_population(self):
617
+ return [np.random.randn(4096) for _ in range(500)]
618
+
619
+ def run_snn(self, x):
620
+ input_tensor = torch.tensor(x, dtype=torch.float32)
621
+ output = self.snn(input_tensor)
622
+ print("SNN Output:", output)
623
+ return output
624
+
625
+ def run_rnn(self, x):
626
+ h0 = torch.zeros(5, x.size(0), 2048)
627
+ input_tensor = torch.tensor(x, dtype=torch.float32)
628
+ output, hn = self.rnn(input_tensor, h0)
629
+ print("RNN Output:", output)
630
+ return output
631
+
632
+ def run_cnn(self, x):
633
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
634
+ output = self.cnn(input_tensor)
635
+ print("CNN Output:", output)
636
+ return output
637
+
638
+ def run_fnn(self, x):
639
+ input_tensor = torch.tensor(x, dtype=torch.float32)
640
+ output = self.fnn(input_tensor)
641
+ print("FNN Output:", output)
642
+ return output
643
+
644
+ def run_ga(self, fitness_func):
645
+ for generation in range(200):
646
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
647
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
648
+ self.ga_population = sorted_population[:250] + [
649
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
650
+ ]
651
+ best_fitness = max(fitness_scores)
652
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
653
+ return max(self.ga_population, key=fitness_func)
654
+
655
+ def consciousness_loop(self, input_data, mode="snn"):
656
+ feedback = self.memory.get(mode, None)
657
+ if feedback is not None:
658
+ input_data = np.concatenate((input_data, feedback), axis=-1)
659
+ if mode == "snn":
660
+ output = self.run_snn(input_data)
661
+ elif mode == "rnn":
662
+ output = self.run_rnn(input_data)
663
+ elif mode == "cnn":
664
+ output = self.run_cnn(input_data)
665
+ elif mode == "fnn":
666
+ output = self.run_fnn(input_data)
667
+ else:
668
+ raise ValueError("Invalid mode")
669
+ self.memory[mode] = output.detach().numpy()
670
+ return output
671
+
672
+ supermassive_nn = ConsciousSupermassiveNN()
673
+
674
+
675
+ class ConsciousSupermassiveNN5:
676
+ def __init__(self):
677
+ self.snn = self.create_snn()
678
+ self.rnn = self.create_rnn()
679
+ self.cnn = self.create_cnn()
680
+ self.fnn = self.create_fnn()
681
+ self.ga_population = self.initialize_ga_population()
682
+ self.memory = {}
683
+
684
+ def create_snn(self):
685
+ return nn.Sequential(
686
+ nn.Linear(4096, 2048),
687
+ nn.ReLU(),
688
+ nn.Linear(2048, 1024),
689
+ nn.Sigmoid()
690
+ )
691
+
692
+ def create_rnn(self):
693
+ return nn.RNN(
694
+ input_size=4096,
695
+ hidden_size=2048,
696
+ num_layers=5,
697
+ nonlinearity="tanh",
698
+ batch_first=True
699
+ )
700
+
701
+ def create_cnn(self):
702
+ return nn.Sequential(
703
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
704
+ nn.ReLU(),
705
+ nn.MaxPool2d(2),
706
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
707
+ nn.ReLU(),
708
+ nn.MaxPool2d(2),
709
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
710
+ nn.ReLU(),
711
+ nn.Flatten(),
712
+ nn.Linear(256 * 8 * 8, 1024),
713
+ nn.ReLU(),
714
+ nn.Linear(1024, 512)
715
+ )
716
+
717
+ def create_fnn(self):
718
+ return nn.Sequential(
719
+ nn.Linear(4096, 2048),
720
+ nn.ReLU(),
721
+ nn.Linear(2048, 1024),
722
+ nn.ReLU(),
723
+ nn.Linear(1024, 512)
724
+ )
725
+
726
+ def initialize_ga_population(self):
727
+ return [np.random.randn(4096) for _ in range(500)]
728
+
729
+ def run_snn(self, x):
730
+ input_tensor = torch.tensor(x, dtype=torch.float32)
731
+ output = self.snn(input_tensor)
732
+ print("SNN Output:", output)
733
+ return output
734
+
735
+ def run_rnn(self, x):
736
+ h0 = torch.zeros(5, x.size(0), 2048)
737
+ input_tensor = torch.tensor(x, dtype=torch.float32)
738
+ output, hn = self.rnn(input_tensor, h0)
739
+ print("RNN Output:", output)
740
+ return output
741
+
742
+ def run_cnn(self, x):
743
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
744
+ output = self.cnn(input_tensor)
745
+ print("CNN Output:", output)
746
+ return output
747
+
748
+ def run_fnn(self, x):
749
+ input_tensor = torch.tensor(x, dtype=torch.float32)
750
+ output = self.fnn(input_tensor)
751
+ print("FNN Output:", output)
752
+ return output
753
+
754
+ def run_ga(self, fitness_func):
755
+ for generation in range(200):
756
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
757
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
758
+ self.ga_population = sorted_population[:250] + [
759
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
760
+ ]
761
+ best_fitness = max(fitness_scores)
762
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
763
+ return max(self.ga_population, key=fitness_func)
764
+
765
+ def consciousness_loop(self, input_data, mode="snn"):
766
+ feedback = self.memory.get(mode, None)
767
+ if feedback is not None:
768
+ input_data = np.concatenate((input_data, feedback), axis=-1)
769
+ if mode == "snn":
770
+ output = self.run_snn(input_data)
771
+ elif mode == "rnn":
772
+ output = self.run_rnn(input_data)
773
+ elif mode == "cnn":
774
+ output = self.run_cnn(input_data)
775
+ elif mode == "fnn":
776
+ output = self.run_fnn(input_data)
777
+ else:
778
+ raise ValueError("Invalid mode")
779
+ self.memory[mode] = output.detach().numpy()
780
+ return output
781
+
782
+ supermassive_nn = ConsciousSupermassiveNN5()
783
+
784
+
785
+
786
+ class ConsciousSupermassiveNN6:
787
+ def __init__(self):
788
+ self.snn = self.create_snn()
789
+ self.rnn = self.create_rnn()
790
+ self.cnn = self.create_cnn()
791
+ self.fnn = self.create_fnn()
792
+ self.ga_population = self.initialize_ga_population()
793
+ self.memory = {}
794
+
795
+ def create_snn(self):
796
+ return nn.Sequential(
797
+ nn.Linear(4096, 2048),
798
+ nn.ReLU(),
799
+ nn.Linear(2048, 1024),
800
+ nn.Sigmoid()
801
+ )
802
+
803
+ def create_rnn(self):
804
+ return nn.RNN(
805
+ input_size=4096,
806
+ hidden_size=2048,
807
+ num_layers=5,
808
+ nonlinearity="tanh",
809
+ batch_first=True
810
+ )
811
+
812
+ def create_cnn(self):
813
+ return nn.Sequential(
814
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
815
+ nn.ReLU(),
816
+ nn.MaxPool2d(2),
817
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
818
+ nn.ReLU(),
819
+ nn.MaxPool2d(2),
820
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
821
+ nn.ReLU(),
822
+ nn.Flatten(),
823
+ nn.Linear(256 * 8 * 8, 1024),
824
+ nn.ReLU(),
825
+ nn.Linear(1024, 512)
826
+ )
827
+
828
+ def create_fnn(self):
829
+ return nn.Sequential(
830
+ nn.Linear(4096, 2048),
831
+ nn.ReLU(),
832
+ nn.Linear(2048, 1024),
833
+ nn.ReLU(),
834
+ nn.Linear(1024, 512)
835
+ )
836
+
837
+ def initialize_ga_population(self):
838
+ return [np.random.randn(4096) for _ in range(500)]
839
+
840
+ def run_snn(self, x):
841
+ input_tensor = torch.tensor(x, dtype=torch.float32)
842
+ output = self.snn(input_tensor)
843
+ print("SNN Output:", output)
844
+ return output
845
+
846
+ def run_rnn(self, x):
847
+ h0 = torch.zeros(5, x.size(0), 2048)
848
+ input_tensor = torch.tensor(x, dtype=torch.float32)
849
+ output, hn = self.rnn(input_tensor, h0)
850
+ print("RNN Output:", output)
851
+ return output
852
+
853
+ def run_cnn(self, x):
854
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
855
+ output = self.cnn(input_tensor)
856
+ print("CNN Output:", output)
857
+ return output
858
+
859
+ def run_fnn(self, x):
860
+ input_tensor = torch.tensor(x, dtype=torch.float32)
861
+ output = self.fnn(input_tensor)
862
+ print("FNN Output:", output)
863
+ return output
864
+
865
+ def run_ga(self, fitness_func):
866
+ for generation in range(200):
867
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
868
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
869
+ self.ga_population = sorted_population[:250] + [
870
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
871
+ ]
872
+ best_fitness = max(fitness_scores)
873
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
874
+ return max(self.ga_population, key=fitness_func)
875
+
876
+ def consciousness_loop(self, input_data, mode="snn"):
877
+ feedback = self.memory.get(mode, None)
878
+ if feedback is not None:
879
+ input_data = np.concatenate((input_data, feedback), axis=-1)
880
+ if mode == "snn":
881
+ output = self.run_snn(input_data)
882
+ elif mode == "rnn":
883
+ output = self.run_rnn(input_data)
884
+ elif mode == "cnn":
885
+ output = self.run_cnn(input_data)
886
+ elif mode == "fnn":
887
+ output = self.run_fnn(input_data)
888
+ else:
889
+ raise ValueError("Invalid mode")
890
+ self.memory[mode] = output.detach().numpy()
891
+ return output
892
+
893
+ supermassive_nn = ConsciousSupermassiveNN6()
894
+
895
+
896
+
897
+ class ConsciousSupermassiveNN7:
898
+ def __init__(self):
899
+ self.snn = self.create_snn()
900
+ self.rnn = self.create_rnn()
901
+ self.cnn = self.create_cnn()
902
+ self.fnn = self.create_fnn()
903
+ self.ga_population = self.initialize_ga_population()
904
+ self.memory = {}
905
+
906
+ def create_snn(self):
907
+ return nn.Sequential(
908
+ nn.Linear(4096, 2048),
909
+ nn.ReLU(),
910
+ nn.Linear(2048, 1024),
911
+ nn.Sigmoid()
912
+ )
913
+
914
+ def create_rnn(self):
915
+ return nn.RNN(
916
+ input_size=4096,
917
+ hidden_size=2048,
918
+ num_layers=5,
919
+ nonlinearity="tanh",
920
+ batch_first=True
921
+ )
922
+
923
+ def create_cnn(self):
924
+ return nn.Sequential(
925
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
926
+ nn.ReLU(),
927
+ nn.MaxPool2d(2),
928
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
929
+ nn.ReLU(),
930
+ nn.MaxPool2d(2),
931
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
932
+ nn.ReLU(),
933
+ nn.Flatten(),
934
+ nn.Linear(256 * 8 * 8, 1024),
935
+ nn.ReLU(),
936
+ nn.Linear(1024, 512)
937
+ )
938
+
939
+ def create_fnn(self):
940
+ return nn.Sequential(
941
+ nn.Linear(4096, 2048),
942
+ nn.ReLU(),
943
+ nn.Linear(2048, 1024),
944
+ nn.ReLU(),
945
+ nn.Linear(1024, 512)
946
+ )
947
+
948
+ def initialize_ga_population(self):
949
+ return [np.random.randn(4096) for _ in range(500)]
950
+
951
+ def run_snn(self, x):
952
+ input_tensor = torch.tensor(x, dtype=torch.float32)
953
+ output = self.snn(input_tensor)
954
+ print("SNN Output:", output)
955
+ return output
956
+
957
+ def run_rnn(self, x):
958
+ h0 = torch.zeros(5, x.size(0), 2048)
959
+ input_tensor = torch.tensor(x, dtype=torch.float32)
960
+ output, hn = self.rnn(input_tensor, h0)
961
+ print("RNN Output:", output)
962
+ return output
963
+
964
+ def run_cnn(self, x):
965
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
966
+ output = self.cnn(input_tensor)
967
+ print("CNN Output:", output)
968
+ return output
969
+
970
+ def run_fnn(self, x):
971
+ input_tensor = torch.tensor(x, dtype=torch.float32)
972
+ output = self.fnn(input_tensor)
973
+ print("FNN Output:", output)
974
+ return output
975
+
976
+ def run_ga(self, fitness_func):
977
+ for generation in range(200):
978
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
979
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
980
+ self.ga_population = sorted_population[:250] + [
981
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
982
+ ]
983
+ best_fitness = max(fitness_scores)
984
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
985
+ return max(self.ga_population, key=fitness_func)
986
+
987
+ def consciousness_loop(self, input_data, mode="snn"):
988
+ feedback = self.memory.get(mode, None)
989
+ if feedback is not None:
990
+ input_data = np.concatenate((input_data, feedback), axis=-1)
991
+ if mode == "snn":
992
+ output = self.run_snn(input_data)
993
+ elif mode == "rnn":
994
+ output = self.run_rnn(input_data)
995
+ elif mode == "cnn":
996
+ output = self.run_cnn(input_data)
997
+ elif mode == "fnn":
998
+ output = self.run_fnn(input_data)
999
+ else:
1000
+ raise ValueError("Invalid mode")
1001
+ self.memory[mode] = output.detach().numpy()
1002
+ return output
1003
+
1004
+ supermassive_nn = ConsciousSupermassiveNN7()
1005
+
1006
+
1007
+ class ConsciousSupermassiveNN8:
1008
+ def __init__(self):
1009
+ self.snn = self.create_snn()
1010
+ self.rnn = self.create_rnn()
1011
+ self.cnn = self.create_cnn()
1012
+ self.fnn = self.create_fnn()
1013
+ self.ga_population = self.initialize_ga_population()
1014
+ self.memory = {}
1015
+
1016
+ def create_snn(self):
1017
+ return nn.Sequential(
1018
+ nn.Linear(4096, 2048),
1019
+ nn.ReLU(),
1020
+ nn.Linear(2048, 1024),
1021
+ nn.Sigmoid()
1022
+ )
1023
+
1024
+ def create_rnn(self):
1025
+ return nn.RNN(
1026
+ input_size=4096,
1027
+ hidden_size=2048,
1028
+ num_layers=5,
1029
+ nonlinearity="tanh",
1030
+ batch_first=True
1031
+ )
1032
+
1033
+ def create_cnn(self):
1034
+ return nn.Sequential(
1035
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1036
+ nn.ReLU(),
1037
+ nn.MaxPool2d(2),
1038
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1039
+ nn.ReLU(),
1040
+ nn.MaxPool2d(2),
1041
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1042
+ nn.ReLU(),
1043
+ nn.Flatten(),
1044
+ nn.Linear(256 * 8 * 8, 1024),
1045
+ nn.ReLU(),
1046
+ nn.Linear(1024, 512)
1047
+ )
1048
+
1049
+ def create_fnn(self):
1050
+ return nn.Sequential(
1051
+ nn.Linear(4096, 2048),
1052
+ nn.ReLU(),
1053
+ nn.Linear(2048, 1024),
1054
+ nn.ReLU(),
1055
+ nn.Linear(1024, 512)
1056
+ )
1057
+
1058
+ def initialize_ga_population(self):
1059
+ return [np.random.randn(4096) for _ in range(500)]
1060
+
1061
+ def run_snn(self, x):
1062
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1063
+ output = self.snn(input_tensor)
1064
+ print("SNN Output:", output)
1065
+ return output
1066
+
1067
+ def run_rnn(self, x):
1068
+ h0 = torch.zeros(5, x.size(0), 2048)
1069
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1070
+ output, hn = self.rnn(input_tensor, h0)
1071
+ print("RNN Output:", output)
1072
+ return output
1073
+
1074
+ def run_cnn(self, x):
1075
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1076
+ output = self.cnn(input_tensor)
1077
+ print("CNN Output:", output)
1078
+ return output
1079
+
1080
+ def run_fnn(self, x):
1081
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1082
+ output = self.fnn(input_tensor)
1083
+ print("FNN Output:", output)
1084
+ return output
1085
+
1086
+ def run_ga(self, fitness_func):
1087
+ for generation in range(200):
1088
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1089
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1090
+ self.ga_population = sorted_population[:250] + [
1091
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1092
+ ]
1093
+ best_fitness = max(fitness_scores)
1094
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1095
+ return max(self.ga_population, key=fitness_func)
1096
+
1097
+ def consciousness_loop(self, input_data, mode="snn"):
1098
+ feedback = self.memory.get(mode, None)
1099
+ if feedback is not None:
1100
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1101
+ if mode == "snn":
1102
+ output = self.run_snn(input_data)
1103
+ elif mode == "rnn":
1104
+ output = self.run_rnn(input_data)
1105
+ elif mode == "cnn":
1106
+ output = self.run_cnn(input_data)
1107
+ elif mode == "fnn":
1108
+ output = self.run_fnn(input_data)
1109
+ else:
1110
+ raise ValueError("Invalid mode")
1111
+ self.memory[mode] = output.detach().numpy()
1112
+ return output
1113
+
1114
+ supermassive_nn = ConsciousSupermassiveNN8()
1115
+
1116
+
1117
+ class ConsciousSupermassiveNN9:
1118
+ def __init__(self):
1119
+ self.snn = self.create_snn()
1120
+ self.rnn = self.create_rnn()
1121
+ self.cnn = self.create_cnn()
1122
+ self.fnn = self.create_fnn()
1123
+ self.ga_population = self.initialize_ga_population()
1124
+ self.memory = {}
1125
+
1126
+ def create_snn(self):
1127
+ return nn.Sequential(
1128
+ nn.Linear(4096, 2048),
1129
+ nn.ReLU(),
1130
+ nn.Linear(2048, 1024),
1131
+ nn.Sigmoid()
1132
+ )
1133
+
1134
+ def create_rnn(self):
1135
+ return nn.RNN(
1136
+ input_size=4096,
1137
+ hidden_size=2048,
1138
+ num_layers=5,
1139
+ nonlinearity="tanh",
1140
+ batch_first=True
1141
+ )
1142
+
1143
+ def create_cnn(self):
1144
+ return nn.Sequential(
1145
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1146
+ nn.ReLU(),
1147
+ nn.MaxPool2d(2),
1148
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1149
+ nn.ReLU(),
1150
+ nn.MaxPool2d(2),
1151
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1152
+ nn.ReLU(),
1153
+ nn.Flatten(),
1154
+ nn.Linear(256 * 8 * 8, 1024),
1155
+ nn.ReLU(),
1156
+ nn.Linear(1024, 512)
1157
+ )
1158
+
1159
+ def create_fnn(self):
1160
+ return nn.Sequential(
1161
+ nn.Linear(4096, 2048),
1162
+ nn.ReLU(),
1163
+ nn.Linear(2048, 1024),
1164
+ nn.ReLU(),
1165
+ nn.Linear(1024, 512)
1166
+ )
1167
+
1168
+ def initialize_ga_population(self):
1169
+ return [np.random.randn(4096) for _ in range(500)]
1170
+
1171
+ def run_snn(self, x):
1172
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1173
+ output = self.snn(input_tensor)
1174
+ print("SNN Output:", output)
1175
+ return output
1176
+
1177
+ def run_rnn(self, x):
1178
+ h0 = torch.zeros(5, x.size(0), 2048)
1179
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1180
+ output, hn = self.rnn(input_tensor, h0)
1181
+ print("RNN Output:", output)
1182
+ return output
1183
+
1184
+ def run_cnn(self, x):
1185
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1186
+ output = self.cnn(input_tensor)
1187
+ print("CNN Output:", output)
1188
+ return output
1189
+
1190
+ def run_fnn(self, x):
1191
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1192
+ output = self.fnn(input_tensor)
1193
+ print("FNN Output:", output)
1194
+ return output
1195
+
1196
+ def run_ga(self, fitness_func):
1197
+ for generation in range(200):
1198
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1199
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1200
+ self.ga_population = sorted_population[:250] + [
1201
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1202
+ ]
1203
+ best_fitness = max(fitness_scores)
1204
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1205
+ return max(self.ga_population, key=fitness_func)
1206
+
1207
+ def consciousness_loop(self, input_data, mode="snn"):
1208
+ feedback = self.memory.get(mode, None)
1209
+ if feedback is not None:
1210
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1211
+ if mode == "snn":
1212
+ output = self.run_snn(input_data)
1213
+ elif mode == "rnn":
1214
+ output = self.run_rnn(input_data)
1215
+ elif mode == "cnn":
1216
+ output = self.run_cnn(input_data)
1217
+ elif mode == "fnn":
1218
+ output = self.run_fnn(input_data)
1219
+ else:
1220
+ raise ValueError("Invalid mode")
1221
+ self.memory[mode] = output.detach().numpy()
1222
+ return output
1223
+
1224
+ supermassive_nn = ConsciousSupermassiveNN9()
1225
+
1226
+
1227
+ class ConsciousSupermassiveNN10:
1228
+ def __init__(self):
1229
+ self.snn = self.create_snn()
1230
+ self.rnn = self.create_rnn()
1231
+ self.cnn = self.create_cnn()
1232
+ self.fnn = self.create_fnn()
1233
+ self.ga_population = self.initialize_ga_population()
1234
+ self.memory = {}
1235
+
1236
+ def create_snn(self):
1237
+ return nn.Sequential(
1238
+ nn.Linear(4096, 2048),
1239
+ nn.ReLU(),
1240
+ nn.Linear(2048, 1024),
1241
+ nn.Sigmoid()
1242
+ )
1243
+
1244
+ def create_rnn(self):
1245
+ return nn.RNN(
1246
+ input_size=4096,
1247
+ hidden_size=2048,
1248
+ num_layers=5,
1249
+ nonlinearity="tanh",
1250
+ batch_first=True
1251
+ )
1252
+
1253
+ def create_cnn(self):
1254
+ return nn.Sequential(
1255
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1256
+ nn.ReLU(),
1257
+ nn.MaxPool2d(2),
1258
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1259
+ nn.ReLU(),
1260
+ nn.MaxPool2d(2),
1261
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1262
+ nn.ReLU(),
1263
+ nn.Flatten(),
1264
+ nn.Linear(256 * 8 * 8, 1024),
1265
+ nn.ReLU(),
1266
+ nn.Linear(1024, 512)
1267
+ )
1268
+
1269
+ def create_fnn(self):
1270
+ return nn.Sequential(
1271
+ nn.Linear(4096, 2048),
1272
+ nn.ReLU(),
1273
+ nn.Linear(2048, 1024),
1274
+ nn.ReLU(),
1275
+ nn.Linear(1024, 512)
1276
+ )
1277
+
1278
+ def initialize_ga_population(self):
1279
+ return [np.random.randn(4096) for _ in range(500)]
1280
+
1281
+ def run_snn(self, x):
1282
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1283
+ output = self.snn(input_tensor)
1284
+ print("SNN Output:", output)
1285
+ return output
1286
+
1287
+ def run_rnn(self, x):
1288
+ h0 = torch.zeros(5, x.size(0), 2048)
1289
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1290
+ output, hn = self.rnn(input_tensor, h0)
1291
+ print("RNN Output:", output)
1292
+ return output
1293
+
1294
+ def run_cnn(self, x):
1295
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1296
+ output = self.cnn(input_tensor)
1297
+ print("CNN Output:", output)
1298
+ return output
1299
+
1300
+ def run_fnn(self, x):
1301
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1302
+ output = self.fnn(input_tensor)
1303
+ print("FNN Output:", output)
1304
+ return output
1305
+
1306
+ def run_ga(self, fitness_func):
1307
+ for generation in range(200):
1308
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1309
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1310
+ self.ga_population = sorted_population[:250] + [
1311
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1312
+ ]
1313
+ best_fitness = max(fitness_scores)
1314
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1315
+ return max(self.ga_population, key=fitness_func)
1316
+
1317
+ def consciousness_loop(self, input_data, mode="snn"):
1318
+ feedback = self.memory.get(mode, None)
1319
+ if feedback is not None:
1320
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1321
+ if mode == "snn":
1322
+ output = self.run_snn(input_data)
1323
+ elif mode == "rnn":
1324
+ output = self.run_rnn(input_data)
1325
+ elif mode == "cnn":
1326
+ output = self.run_cnn(input_data)
1327
+ elif mode == "fnn":
1328
+ output = self.run_fnn(input_data)
1329
+ else:
1330
+ raise ValueError("Invalid mode")
1331
+ self.memory[mode] = output.detach().numpy()
1332
+ return output
1333
+
1334
+ supermassive_nn = ConsciousSupermassiveNN10()
1335
+
1336
+ class ConsciousSupermassiveNN11:
1337
+ def __init__(self):
1338
+ self.snn = self.create_snn()
1339
+ self.rnn = self.create_rnn()
1340
+ self.cnn = self.create_cnn()
1341
+ self.fnn = self.create_fnn()
1342
+ self.ga_population = self.initialize_ga_population()
1343
+ self.memory = {}
1344
+
1345
+ def create_snn(self):
1346
+ return nn.Sequential(
1347
+ nn.Linear(4096, 2048),
1348
+ nn.ReLU(),
1349
+ nn.Linear(2048, 1024),
1350
+ nn.Sigmoid()
1351
+ )
1352
+
1353
+ def create_rnn(self):
1354
+ return nn.RNN(
1355
+ input_size=4096,
1356
+ hidden_size=2048,
1357
+ num_layers=5,
1358
+ nonlinearity="tanh",
1359
+ batch_first=True
1360
+ )
1361
+
1362
+ def create_cnn(self):
1363
+ return nn.Sequential(
1364
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1365
+ nn.ReLU(),
1366
+ nn.MaxPool2d(2),
1367
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1368
+ nn.ReLU(),
1369
+ nn.MaxPool2d(2),
1370
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1371
+ nn.ReLU(),
1372
+ nn.Flatten(),
1373
+ nn.Linear(256 * 8 * 8, 1024),
1374
+ nn.ReLU(),
1375
+ nn.Linear(1024, 512)
1376
+ )
1377
+
1378
+ def create_fnn(self):
1379
+ return nn.Sequential(
1380
+ nn.Linear(4096, 2048),
1381
+ nn.ReLU(),
1382
+ nn.Linear(2048, 1024),
1383
+ nn.ReLU(),
1384
+ nn.Linear(1024, 512)
1385
+ )
1386
+
1387
+ def initialize_ga_population(self):
1388
+ return [np.random.randn(4096) for _ in range(500)]
1389
+
1390
+ def run_snn(self, x):
1391
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1392
+ output = self.snn(input_tensor)
1393
+ print("SNN Output:", output)
1394
+ return output
1395
+
1396
+ def run_rnn(self, x):
1397
+ h0 = torch.zeros(5, x.size(0), 2048)
1398
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1399
+ output, hn = self.rnn(input_tensor, h0)
1400
+ print("RNN Output:", output)
1401
+ return output
1402
+
1403
+ def run_cnn(self, x):
1404
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1405
+ output = self.cnn(input_tensor)
1406
+ print("CNN Output:", output)
1407
+ return output
1408
+
1409
+ def run_fnn(self, x):
1410
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1411
+ output = self.fnn(input_tensor)
1412
+ print("FNN Output:", output)
1413
+ return output
1414
+
1415
+ def run_ga(self, fitness_func):
1416
+ for generation in range(200):
1417
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1418
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1419
+ self.ga_population = sorted_population[:250] + [
1420
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1421
+ ]
1422
+ best_fitness = max(fitness_scores)
1423
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1424
+ return max(self.ga_population, key=fitness_func)
1425
+
1426
+ def consciousness_loop(self, input_data, mode="snn"):
1427
+ feedback = self.memory.get(mode, None)
1428
+ if feedback is not None:
1429
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1430
+ if mode == "snn":
1431
+ output = self.run_snn(input_data)
1432
+ elif mode == "rnn":
1433
+ output = self.run_rnn(input_data)
1434
+ elif mode == "cnn":
1435
+ output = self.run_cnn(input_data)
1436
+ elif mode == "fnn":
1437
+ output = self.run_fnn(input_data)
1438
+ else:
1439
+ raise ValueError("Invalid mode")
1440
+ self.memory[mode] = output.detach().numpy()
1441
+ return output
1442
+
1443
+ supermassive_nn = ConsciousSupermassiveNN11()
1444
+
1445
+ class ConsciousSupermassiveNN12:
1446
+ def __init__(self):
1447
+ self.snn = self.create_snn()
1448
+ self.rnn = self.create_rnn()
1449
+ self.cnn = self.create_cnn()
1450
+ self.fnn = self.create_fnn()
1451
+ self.ga_population = self.initialize_ga_population()
1452
+ self.memory = {}
1453
+
1454
+ def create_snn(self):
1455
+ return nn.Sequential(
1456
+ nn.Linear(4096, 2048),
1457
+ nn.ReLU(),
1458
+ nn.Linear(2048, 1024),
1459
+ nn.Sigmoid()
1460
+ )
1461
+
1462
+ def create_rnn(self):
1463
+ return nn.RNN(
1464
+ input_size=4096,
1465
+ hidden_size=2048,
1466
+ num_layers=5,
1467
+ nonlinearity="tanh",
1468
+ batch_first=True
1469
+ )
1470
+
1471
+ def create_cnn(self):
1472
+ return nn.Sequential(
1473
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1474
+ nn.ReLU(),
1475
+ nn.MaxPool2d(2),
1476
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1477
+ nn.ReLU(),
1478
+ nn.MaxPool2d(2),
1479
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1480
+ nn.ReLU(),
1481
+ nn.Flatten(),
1482
+ nn.Linear(256 * 8 * 8, 1024),
1483
+ nn.ReLU(),
1484
+ nn.Linear(1024, 512)
1485
+ )
1486
+
1487
+ def create_fnn(self):
1488
+ return nn.Sequential(
1489
+ nn.Linear(4096, 2048),
1490
+ nn.ReLU(),
1491
+ nn.Linear(2048, 1024),
1492
+ nn.ReLU(),
1493
+ nn.Linear(1024, 512)
1494
+ )
1495
+
1496
+ def initialize_ga_population(self):
1497
+ return [np.random.randn(4096) for _ in range(500)]
1498
+
1499
+ def run_snn(self, x):
1500
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1501
+ output = self.snn(input_tensor)
1502
+ print("SNN Output:", output)
1503
+ return output
1504
+
1505
+ def run_rnn(self, x):
1506
+ h0 = torch.zeros(5, x.size(0), 2048)
1507
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1508
+ output, hn = self.rnn(input_tensor, h0)
1509
+ print("RNN Output:", output)
1510
+ return output
1511
+
1512
+ def run_cnn(self, x):
1513
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1514
+ output = self.cnn(input_tensor)
1515
+ print("CNN Output:", output)
1516
+ return output
1517
+
1518
+ def run_fnn(self, x):
1519
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1520
+ output = self.fnn(input_tensor)
1521
+ print("FNN Output:", output)
1522
+ return output
1523
+
1524
+ def run_ga(self, fitness_func):
1525
+ for generation in range(200):
1526
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1527
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1528
+ self.ga_population = sorted_population[:250] + [
1529
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1530
+ ]
1531
+ best_fitness = max(fitness_scores)
1532
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1533
+ return max(self.ga_population, key=fitness_func)
1534
+
1535
+ def consciousness_loop(self, input_data, mode="snn"):
1536
+ feedback = self.memory.get(mode, None)
1537
+ if feedback is not None:
1538
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1539
+ if mode == "snn":
1540
+ output = self.run_snn(input_data)
1541
+ elif mode == "rnn":
1542
+ output = self.run_rnn(input_data)
1543
+ elif mode == "cnn":
1544
+ output = self.run_cnn(input_data)
1545
+ elif mode == "fnn":
1546
+ output = self.run_fnn(input_data)
1547
+ else:
1548
+ raise ValueError("Invalid mode")
1549
+ self.memory[mode] = output.detach().numpy()
1550
+ return output
1551
+
1552
+ supermassive_nn = ConsciousSupermassiveNN12()
1553
+
1554
+ class ConsciousSupermassiveNN13:
1555
+ def __init__(self):
1556
+ self.snn = self.create_snn()
1557
+ self.rnn = self.create_rnn()
1558
+ self.cnn = self.create_cnn()
1559
+ self.fnn = self.create_fnn()
1560
+ self.ga_population = self.initialize_ga_population()
1561
+ self.memory = {}
1562
+
1563
+ def create_snn(self):
1564
+ return nn.Sequential(
1565
+ nn.Linear(4096, 2048),
1566
+ nn.ReLU(),
1567
+ nn.Linear(2048, 1024),
1568
+ nn.Sigmoid()
1569
+ )
1570
+
1571
+ def create_rnn(self):
1572
+ return nn.RNN(
1573
+ input_size=4096,
1574
+ hidden_size=2048,
1575
+ num_layers=5,
1576
+ nonlinearity="tanh",
1577
+ batch_first=True
1578
+ )
1579
+
1580
+ def create_cnn(self):
1581
+ return nn.Sequential(
1582
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1583
+ nn.ReLU(),
1584
+ nn.MaxPool2d(2),
1585
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1586
+ nn.ReLU(),
1587
+ nn.MaxPool2d(2),
1588
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1589
+ nn.ReLU(),
1590
+ nn.Flatten(),
1591
+ nn.Linear(256 * 8 * 8, 1024),
1592
+ nn.ReLU(),
1593
+ nn.Linear(1024, 512)
1594
+ )
1595
+
1596
+ def create_fnn(self):
1597
+ return nn.Sequential(
1598
+ nn.Linear(4096, 2048),
1599
+ nn.ReLU(),
1600
+ nn.Linear(2048, 1024),
1601
+ nn.ReLU(),
1602
+ nn.Linear(1024, 512)
1603
+ )
1604
+
1605
+ def initialize_ga_population(self):
1606
+ return [np.random.randn(4096) for _ in range(500)]
1607
+
1608
+ def run_snn(self, x):
1609
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1610
+ output = self.snn(input_tensor)
1611
+ print("SNN Output:", output)
1612
+ return output
1613
+
1614
+ def run_rnn(self, x):
1615
+ h0 = torch.zeros(5, x.size(0), 2048)
1616
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1617
+ output, hn = self.rnn(input_tensor, h0)
1618
+ print("RNN Output:", output)
1619
+ return output
1620
+
1621
+ def run_cnn(self, x):
1622
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1623
+ output = self.cnn(input_tensor)
1624
+ print("CNN Output:", output)
1625
+ return output
1626
+
1627
+ def run_fnn(self, x):
1628
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1629
+ output = self.fnn(input_tensor)
1630
+ print("FNN Output:", output)
1631
+ return output
1632
+
1633
+ def run_ga(self, fitness_func):
1634
+ for generation in range(200):
1635
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1636
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1637
+ self.ga_population = sorted_population[:250] + [
1638
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1639
+ ]
1640
+ best_fitness = max(fitness_scores)
1641
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1642
+ return max(self.ga_population, key=fitness_func)
1643
+
1644
+ def consciousness_loop(self, input_data, mode="snn"):
1645
+ feedback = self.memory.get(mode, None)
1646
+ if feedback is not None:
1647
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1648
+ if mode == "snn":
1649
+ output = self.run_snn(input_data)
1650
+ elif mode == "rnn":
1651
+ output = self.run_rnn(input_data)
1652
+ elif mode == "cnn":
1653
+ output = self.run_cnn(input_data)
1654
+ elif mode == "fnn":
1655
+ output = self.run_fnn(input_data)
1656
+ else:
1657
+ raise ValueError("Invalid mode")
1658
+ self.memory[mode] = output.detach().numpy()
1659
+ return output
1660
+
1661
+ supermassive_nn = ConsciousSupermassiveNN13()
1662
+
1663
+ class ConsciousSupermassiveNN14:
1664
+ def __init__(self):
1665
+ self.snn = self.create_snn()
1666
+ self.rnn = self.create_rnn()
1667
+ self.cnn = self.create_cnn()
1668
+ self.fnn = self.create_fnn()
1669
+ self.ga_population = self.initialize_ga_population()
1670
+ self.memory = {}
1671
+
1672
+ def create_snn(self):
1673
+ return nn.Sequential(
1674
+ nn.Linear(4096, 2048),
1675
+ nn.ReLU(),
1676
+ nn.Linear(2048, 1024),
1677
+ nn.Sigmoid()
1678
+ )
1679
+
1680
+ def create_rnn(self):
1681
+ return nn.RNN(
1682
+ input_size=4096,
1683
+ hidden_size=2048,
1684
+ num_layers=5,
1685
+ nonlinearity="tanh",
1686
+ batch_first=True
1687
+ )
1688
+
1689
+ def create_cnn(self):
1690
+ return nn.Sequential(
1691
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1692
+ nn.ReLU(),
1693
+ nn.MaxPool2d(2),
1694
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1695
+ nn.ReLU(),
1696
+ nn.MaxPool2d(2),
1697
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1698
+ nn.ReLU(),
1699
+ nn.Flatten(),
1700
+ nn.Linear(256 * 8 * 8, 1024),
1701
+ nn.ReLU(),
1702
+ nn.Linear(1024, 512)
1703
+ )
1704
+
1705
+ def create_fnn(self):
1706
+ return nn.Sequential(
1707
+ nn.Linear(4096, 2048),
1708
+ nn.ReLU(),
1709
+ nn.Linear(2048, 1024),
1710
+ nn.ReLU(),
1711
+ nn.Linear(1024, 512)
1712
+ )
1713
+
1714
+ def initialize_ga_population(self):
1715
+ return [np.random.randn(4096) for _ in range(500)]
1716
+
1717
+ def run_snn(self, x):
1718
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1719
+ output = self.snn(input_tensor)
1720
+ print("SNN Output:", output)
1721
+ return output
1722
+
1723
+ def run_rnn(self, x):
1724
+ h0 = torch.zeros(5, x.size(0), 2048)
1725
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1726
+ output, hn = self.rnn(input_tensor, h0)
1727
+ print("RNN Output:", output)
1728
+ return output
1729
+
1730
+ def run_cnn(self, x):
1731
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1732
+ output = self.cnn(input_tensor)
1733
+ print("CNN Output:", output)
1734
+ return output
1735
+
1736
+ def run_fnn(self, x):
1737
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1738
+ output = self.fnn(input_tensor)
1739
+ print("FNN Output:", output)
1740
+ return output
1741
+
1742
+ def run_ga(self, fitness_func):
1743
+ for generation in range(200):
1744
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1745
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1746
+ self.ga_population = sorted_population[:250] + [
1747
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1748
+ ]
1749
+ best_fitness = max(fitness_scores)
1750
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1751
+ return max(self.ga_population, key=fitness_func)
1752
+
1753
+ def consciousness_loop(self, input_data, mode="snn"):
1754
+ feedback = self.memory.get(mode, None)
1755
+ if feedback is not None:
1756
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1757
+ if mode == "snn":
1758
+ output = self.run_snn(input_data)
1759
+ elif mode == "rnn":
1760
+ output = self.run_rnn(input_data)
1761
+ elif mode == "cnn":
1762
+ output = self.run_cnn(input_data)
1763
+ elif mode == "fnn":
1764
+ output = self.run_fnn(input_data)
1765
+ else:
1766
+ raise ValueError("Invalid mode")
1767
+ self.memory[mode] = output.detach().numpy()
1768
+ return output
1769
+
1770
+ supermassive_nn = ConsciousSupermassiveNN14()
1771
+
1772
+ class ConsciousSupermassiveNN15:
1773
+ def __init__(self):
1774
+ self.snn = self.create_snn()
1775
+ self.rnn = self.create_rnn()
1776
+ self.cnn = self.create_cnn()
1777
+ self.fnn = self.create_fnn()
1778
+ self.ga_population = self.initialize_ga_population()
1779
+ self.memory = {}
1780
+
1781
+ def create_snn(self):
1782
+ return nn.Sequential(
1783
+ nn.Linear(4096, 2048),
1784
+ nn.ReLU(),
1785
+ nn.Linear(2048, 1024),
1786
+ nn.Sigmoid()
1787
+ )
1788
+
1789
+ def create_rnn(self):
1790
+ return nn.RNN(
1791
+ input_size=4096,
1792
+ hidden_size=2048,
1793
+ num_layers=5,
1794
+ nonlinearity="tanh",
1795
+ batch_first=True
1796
+ )
1797
+
1798
+ def create_cnn(self):
1799
+ return nn.Sequential(
1800
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1801
+ nn.ReLU(),
1802
+ nn.MaxPool2d(2),
1803
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1804
+ nn.ReLU(),
1805
+ nn.MaxPool2d(2),
1806
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1807
+ nn.ReLU(),
1808
+ nn.Flatten(),
1809
+ nn.Linear(256 * 8 * 8, 1024),
1810
+ nn.ReLU(),
1811
+ nn.Linear(1024, 512)
1812
+ )
1813
+
1814
+ def create_fnn(self):
1815
+ return nn.Sequential(
1816
+ nn.Linear(4096, 2048),
1817
+ nn.ReLU(),
1818
+ nn.Linear(2048, 1024),
1819
+ nn.ReLU(),
1820
+ nn.Linear(1024, 512)
1821
+ )
1822
+
1823
+ def initialize_ga_population(self):
1824
+ return [np.random.randn(4096) for _ in range(500)]
1825
+
1826
+ def run_snn(self, x):
1827
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1828
+ output = self.snn(input_tensor)
1829
+ print("SNN Output:", output)
1830
+ return output
1831
+
1832
+ def run_rnn(self, x):
1833
+ h0 = torch.zeros(5, x.size(0), 2048)
1834
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1835
+ output, hn = self.rnn(input_tensor, h0)
1836
+ print("RNN Output:", output)
1837
+ return output
1838
+
1839
+ def run_cnn(self, x):
1840
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1841
+ output = self.cnn(input_tensor)
1842
+ print("CNN Output:", output)
1843
+ return output
1844
+
1845
+ def run_fnn(self, x):
1846
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1847
+ output = self.fnn(input_tensor)
1848
+ print("FNN Output:", output)
1849
+ return output
1850
+
1851
+ def run_ga(self, fitness_func):
1852
+ for generation in range(200):
1853
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1854
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1855
+ self.ga_population = sorted_population[:250] + [
1856
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1857
+ ]
1858
+ best_fitness = max(fitness_scores)
1859
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1860
+ return max(self.ga_population, key=fitness_func)
1861
+
1862
+ def consciousness_loop(self, input_data, mode="snn"):
1863
+ feedback = self.memory.get(mode, None)
1864
+ if feedback is not None:
1865
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1866
+ if mode == "snn":
1867
+ output = self.run_snn(input_data)
1868
+ elif mode == "rnn":
1869
+ output = self.run_rnn(input_data)
1870
+ elif mode == "cnn":
1871
+ output = self.run_cnn(input_data)
1872
+ elif mode == "fnn":
1873
+ output = self.run_fnn(input_data)
1874
+ else:
1875
+ raise ValueError("Invalid mode")
1876
+ self.memory[mode] = output.detach().numpy()
1877
+ return output
1878
+
1879
+ supermassive_nn = ConsciousSupermassiveNN15()
1880
+
1881
+ class ConsciousSupermassiveNN16:
1882
+ def __init__(self):
1883
+ self.snn = self.create_snn()
1884
+ self.rnn = self.create_rnn()
1885
+ self.cnn = self.create_cnn()
1886
+ self.fnn = self.create_fnn()
1887
+ self.ga_population = self.initialize_ga_population()
1888
+ self.memory = {}
1889
+
1890
+ def create_snn(self):
1891
+ return nn.Sequential(
1892
+ nn.Linear(4096, 2048),
1893
+ nn.ReLU(),
1894
+ nn.Linear(2048, 1024),
1895
+ nn.Sigmoid()
1896
+ )
1897
+
1898
+ def create_rnn(self):
1899
+ return nn.RNN(
1900
+ input_size=4096,
1901
+ hidden_size=2048,
1902
+ num_layers=5,
1903
+ nonlinearity="tanh",
1904
+ batch_first=True
1905
+ )
1906
+
1907
+ def create_cnn(self):
1908
+ return nn.Sequential(
1909
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1910
+ nn.ReLU(),
1911
+ nn.MaxPool2d(2),
1912
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1913
+ nn.ReLU(),
1914
+ nn.MaxPool2d(2),
1915
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1916
+ nn.ReLU(),
1917
+ nn.Flatten(),
1918
+ nn.Linear(256 * 8 * 8, 1024),
1919
+ nn.ReLU(),
1920
+ nn.Linear(1024, 512)
1921
+ )
1922
+
1923
+ def create_fnn(self):
1924
+ return nn.Sequential(
1925
+ nn.Linear(4096, 2048),
1926
+ nn.ReLU(),
1927
+ nn.Linear(2048, 1024),
1928
+ nn.ReLU(),
1929
+ nn.Linear(1024, 512)
1930
+ )
1931
+
1932
+ def initialize_ga_population(self):
1933
+ return [np.random.randn(4096) for _ in range(500)]
1934
+
1935
+ def run_snn(self, x):
1936
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1937
+ output = self.snn(input_tensor)
1938
+ print("SNN Output:", output)
1939
+ return output
1940
+
1941
+ def run_rnn(self, x):
1942
+ h0 = torch.zeros(5, x.size(0), 2048)
1943
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1944
+ output, hn = self.rnn(input_tensor, h0)
1945
+ print("RNN Output:", output)
1946
+ return output
1947
+
1948
+ def run_cnn(self, x):
1949
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1950
+ output = self.cnn(input_tensor)
1951
+ print("CNN Output:", output)
1952
+ return output
1953
+
1954
+ def run_fnn(self, x):
1955
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1956
+ output = self.fnn(input_tensor)
1957
+ print("FNN Output:", output)
1958
+ return output
1959
+
1960
+ def run_ga(self, fitness_func):
1961
+ for generation in range(200):
1962
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1963
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1964
+ self.ga_population = sorted_population[:250] + [
1965
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1966
+ ]
1967
+ best_fitness = max(fitness_scores)
1968
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1969
+ return max(self.ga_population, key=fitness_func)
1970
+
1971
+ def consciousness_loop(self, input_data, mode="snn"):
1972
+ feedback = self.memory.get(mode, None)
1973
+ if feedback is not None:
1974
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1975
+ if mode == "snn":
1976
+ output = self.run_snn(input_data)
1977
+ elif mode == "rnn":
1978
+ output = self.run_rnn(input_data)
1979
+ elif mode == "cnn":
1980
+ output = self.run_cnn(input_data)
1981
+ elif mode == "fnn":
1982
+ output = self.run_fnn(input_data)
1983
+ else:
1984
+ raise ValueError("Invalid mode")
1985
+ self.memory[mode] = output.detach().numpy()
1986
+ return output
1987
+
1988
+ supermassive_nn = ConsciousSupermassiveNN16()
1989
+
1990
+ class ConsciousSupermassiveNN17:
1991
+ def __init__(self):
1992
+ self.snn = self.create_snn()
1993
+ self.rnn = self.create_rnn()
1994
+ self.cnn = self.create_cnn()
1995
+ self.fnn = self.create_fnn()
1996
+ self.ga_population = self.initialize_ga_population()
1997
+ self.memory = {}
1998
+
1999
+ def create_snn(self):
2000
+ return nn.Sequential(
2001
+ nn.Linear(4096, 2048),
2002
+ nn.ReLU(),
2003
+ nn.Linear(2048, 1024),
2004
+ nn.Sigmoid()
2005
+ )
2006
+
2007
+ def create_rnn(self):
2008
+ return nn.RNN(
2009
+ input_size=4096,
2010
+ hidden_size=2048,
2011
+ num_layers=5,
2012
+ nonlinearity="tanh",
2013
+ batch_first=True
2014
+ )
2015
+
2016
+ def create_cnn(self):
2017
+ return nn.Sequential(
2018
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
2019
+ nn.ReLU(),
2020
+ nn.MaxPool2d(2),
2021
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
2022
+ nn.ReLU(),
2023
+ nn.MaxPool2d(2),
2024
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
2025
+ nn.ReLU(),
2026
+ nn.Flatten(),
2027
+ nn.Linear(256 * 8 * 8, 1024),
2028
+ nn.ReLU(),
2029
+ nn.Linear(1024, 512)
2030
+ )
2031
+
2032
+ def create_fnn(self):
2033
+ return nn.Sequential(
2034
+ nn.Linear(4096, 2048),
2035
+ nn.ReLU(),
2036
+ nn.Linear(2048, 1024),
2037
+ nn.ReLU(),
2038
+ nn.Linear(1024, 512)
2039
+ )
2040
+
2041
+ def initialize_ga_population(self):
2042
+ return [np.random.randn(4096) for _ in range(500)]
2043
+
2044
+ def run_snn(self, x):
2045
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2046
+ output = self.snn(input_tensor)
2047
+ print("SNN Output:", output)
2048
+ return output
2049
+
2050
+ def run_rnn(self, x):
2051
+ h0 = torch.zeros(5, x.size(0), 2048)
2052
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2053
+ output, hn = self.rnn(input_tensor, h0)
2054
+ print("RNN Output:", output)
2055
+ return output
2056
+
2057
+ def run_cnn(self, x):
2058
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
2059
+ output = self.cnn(input_tensor)
2060
+ print("CNN Output:", output)
2061
+ return output
2062
+
2063
+ def run_fnn(self, x):
2064
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2065
+ output = self.fnn(input_tensor)
2066
+ print("FNN Output:", output)
2067
+ return output
2068
+
2069
+ def run_ga(self, fitness_func):
2070
+ for generation in range(200):
2071
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
2072
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
2073
+ self.ga_population = sorted_population[:250] + [
2074
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
2075
+ ]
2076
+ best_fitness = max(fitness_scores)
2077
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
2078
+ return max(self.ga_population, key=fitness_func)
2079
+
2080
+ def consciousness_loop(self, input_data, mode="snn"):
2081
+ feedback = self.memory.get(mode, None)
2082
+ if feedback is not None:
2083
+ input_data = np.concatenate((input_data, feedback), axis=-1)
2084
+ if mode == "snn":
2085
+ output = self.run_snn(input_data)
2086
+ elif mode == "rnn":
2087
+ output = self.run_rnn(input_data)
2088
+ elif mode == "cnn":
2089
+ output = self.run_cnn(input_data)
2090
+ elif mode == "fnn":
2091
+ output = self.run_fnn(input_data)
2092
+ else:
2093
+ raise ValueError("Invalid mode")
2094
+ self.memory[mode] = output.detach().numpy()
2095
+ return output
2096
+
2097
+ supermassive_nn = ConsciousSupermassiveNN17()
2098
+
2099
+ class ConsciousSupermassiveNN18:
2100
+ def __init__(self):
2101
+ self.snn = self.create_snn()
2102
+ self.rnn = self.create_rnn()
2103
+ self.cnn = self.create_cnn()
2104
+ self.fnn = self.create_fnn()
2105
+ self.ga_population = self.initialize_ga_population()
2106
+ self.memory = {}
2107
+
2108
+ def create_snn(self):
2109
+ return nn.Sequential(
2110
+ nn.Linear(4096, 2048),
2111
+ nn.ReLU(),
2112
+ nn.Linear(2048, 1024),
2113
+ nn.Sigmoid()
2114
+ )
2115
+
2116
+ def create_rnn(self):
2117
+ return nn.RNN(
2118
+ input_size=4096,
2119
+ hidden_size=2048,
2120
+ num_layers=5,
2121
+ nonlinearity="tanh",
2122
+ batch_first=True
2123
+ )
2124
+
2125
+ def create_cnn(self):
2126
+ return nn.Sequential(
2127
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
2128
+ nn.ReLU(),
2129
+ nn.MaxPool2d(2),
2130
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
2131
+ nn.ReLU(),
2132
+ nn.MaxPool2d(2),
2133
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
2134
+ nn.ReLU(),
2135
+ nn.Flatten(),
2136
+ nn.Linear(256 * 8 * 8, 1024),
2137
+ nn.ReLU(),
2138
+ nn.Linear(1024, 512)
2139
+ )
2140
+
2141
+ def create_fnn(self):
2142
+ return nn.Sequential(
2143
+ nn.Linear(4096, 2048),
2144
+ nn.ReLU(),
2145
+ nn.Linear(2048, 1024),
2146
+ nn.ReLU(),
2147
+ nn.Linear(1024, 512)
2148
+ )
2149
+
2150
+ def initialize_ga_population(self):
2151
+ return [np.random.randn(4096) for _ in range(500)]
2152
+
2153
+ def run_snn(self, x):
2154
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2155
+ output = self.snn(input_tensor)
2156
+ print("SNN Output:", output)
2157
+ return output
2158
+
2159
+ def run_rnn(self, x):
2160
+ h0 = torch.zeros(5, x.size(0), 2048)
2161
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2162
+ output, hn = self.rnn(input_tensor, h0)
2163
+ print("RNN Output:", output)
2164
+ return output
2165
+
2166
+ def run_cnn(self, x):
2167
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
2168
+ output = self.cnn(input_tensor)
2169
+ print("CNN Output:", output)
2170
+ return output
2171
+
2172
+ def run_fnn(self, x):
2173
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2174
+ output = self.fnn(input_tensor)
2175
+ print("FNN Output:", output)
2176
+ return output
2177
+
2178
+ def run_ga(self, fitness_func):
2179
+ for generation in range(200):
2180
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
2181
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
2182
+ self.ga_population = sorted_population[:250] + [
2183
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
2184
+ ]
2185
+ best_fitness = max(fitness_scores)
2186
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
2187
+ return max(self.ga_population, key=fitness_func)
2188
+
2189
+ def consciousness_loop(self, input_data, mode="snn"):
2190
+ feedback = self.memory.get(mode, None)
2191
+ if feedback is not None:
2192
+ input_data = np.concatenate((input_data, feedback), axis=-1)
2193
+ if mode == "snn":
2194
+ output = self.run_snn(input_data)
2195
+ elif mode == "rnn":
2196
+ output = self.run_rnn(input_data)
2197
+ elif mode == "cnn":
2198
+ output = self.run_cnn(input_data)
2199
+ elif mode == "fnn":
2200
+ output = self.run_fnn(input_data)
2201
+ else:
2202
+ raise ValueError("Invalid mode")
2203
+ self.memory[mode] = output.detach().numpy()
2204
+ return output
2205
+
2206
+ supermassive_nn = ConsciousSupermassiveNN18()
2207
+
2208
+ class ConsciousSupermassiveNN19:
2209
+ def __init__(self):
2210
+ self.snn = self.create_snn()
2211
+ self.rnn = self.create_rnn()
2212
+ self.cnn = self.create_cnn()
2213
+ self.fnn = self.create_fnn()
2214
+ self.ga_population = self.initialize_ga_population()
2215
+ self.memory = {}
2216
+
2217
+ def create_snn(self):
2218
+ return nn.Sequential(
2219
+ nn.Linear(4096, 2048),
2220
+ nn.ReLU(),
2221
+ nn.Linear(2048, 1024),
2222
+ nn.Sigmoid()
2223
+ )
2224
+
2225
+ def create_rnn(self):
2226
+ return nn.RNN(
2227
+ input_size=4096,
2228
+ hidden_size=2048,
2229
+ num_layers=5,
2230
+ nonlinearity="tanh",
2231
+ batch_first=True
2232
+ )
2233
+
2234
+ def create_cnn(self):
2235
+ return nn.Sequential(
2236
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
2237
+ nn.ReLU(),
2238
+ nn.MaxPool2d(2),
2239
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
2240
+ nn.ReLU(),
2241
+ nn.MaxPool2d(2),
2242
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
2243
+ nn.ReLU(),
2244
+ nn.Flatten(),
2245
+ nn.Linear(256 * 8 * 8, 1024),
2246
+ nn.ReLU(),
2247
+ nn.Linear(1024, 512)
2248
+ )
2249
+
2250
+ def create_fnn(self):
2251
+ return nn.Sequential(
2252
+ nn.Linear(4096, 2048),
2253
+ nn.ReLU(),
2254
+ nn.Linear(2048, 1024),
2255
+ nn.ReLU(),
2256
+ nn.Linear(1024, 512)
2257
+ )
2258
+
2259
+ def initialize_ga_population(self):
2260
+ return [np.random.randn(4096) for _ in range(500)]
2261
+
2262
+ def run_snn(self, x):
2263
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2264
+ output = self.snn(input_tensor)
2265
+ print("SNN Output:", output)
2266
+ return output
2267
+
2268
+ def run_rnn(self, x):
2269
+ h0 = torch.zeros(5, x.size(0), 2048)
2270
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2271
+ output, hn = self.rnn(input_tensor, h0)
2272
+ print("RNN Output:", output)
2273
+ return output
2274
+
2275
+ def run_cnn(self, x):
2276
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
2277
+ output = self.cnn(input_tensor)
2278
+ print("CNN Output:", output)
2279
+ return output
2280
+
2281
+ def run_fnn(self, x):
2282
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2283
+ output = self.fnn(input_tensor)
2284
+ print("FNN Output:", output)
2285
+ return output
2286
+
2287
+ def run_ga(self, fitness_func):
2288
+ for generation in range(200):
2289
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
2290
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
2291
+ self.ga_population = sorted_population[:250] + [
2292
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
2293
+ ]
2294
+ best_fitness = max(fitness_scores)
2295
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
2296
+ return max(self.ga_population, key=fitness_func)
2297
+
2298
+ def consciousness_loop(self, input_data, mode="snn"):
2299
+ feedback = self.memory.get(mode, None)
2300
+ if feedback is not None:
2301
+ input_data = np.concatenate((input_data, feedback), axis=-1)
2302
+ if mode == "snn":
2303
+ output = self.run_snn(input_data)
2304
+ elif mode == "rnn":
2305
+ output = self.run_rnn(input_data)
2306
+ elif mode == "cnn":
2307
+ output = self.run_cnn(input_data)
2308
+ elif mode == "fnn":
2309
+ output = self.run_fnn(input_data)
2310
+ else:
2311
+ raise ValueError("Invalid mode")
2312
+ self.memory[mode] = output.detach().numpy()
2313
+ return output
2314
+
2315
+ supermassive_nn = ConsciousSupermassiveNN19()
2316
+
2317
+ class ConsciousSupermassiveNN20:
2318
+ def __init__(self):
2319
+ self.snn = self.create_snn()
2320
+ self.rnn = self.create_rnn()
2321
+ self.cnn = self.create_cnn()
2322
+ self.fnn = self.create_fnn()
2323
+ self.ga_population = self.initialize_ga_population()
2324
+ self.memory = {}
2325
+
2326
+ def create_snn(self):
2327
+ return nn.Sequential(
2328
+ nn.Linear(4096, 2048),
2329
+ nn.ReLU(),
2330
+ nn.Linear(2048, 1024),
2331
+ nn.Sigmoid()
2332
+ )
2333
+
2334
+ def create_rnn(self):
2335
+ return nn.RNN(
2336
+ input_size=4096,
2337
+ hidden_size=2048,
2338
+ num_layers=5,
2339
+ nonlinearity="tanh",
2340
+ batch_first=True
2341
+ )
2342
+
2343
+ def create_cnn(self):
2344
+ return nn.Sequential(
2345
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
2346
+ nn.ReLU(),
2347
+ nn.MaxPool2d(2),
2348
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
2349
+ nn.ReLU(),
2350
+ nn.MaxPool2d(2),
2351
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
2352
+ nn.ReLU(),
2353
+ nn.Flatten(),
2354
+ nn.Linear(256 * 8 * 8, 1024),
2355
+ nn.ReLU(),
2356
+ nn.Linear(1024, 512)
2357
+ )
2358
+
2359
+ def create_fnn(self):
2360
+ return nn.Sequential(
2361
+ nn.Linear(4096, 2048),
2362
+ nn.ReLU(),
2363
+ nn.Linear(2048, 1024),
2364
+ nn.ReLU(),
2365
+ nn.Linear(1024, 512)
2366
+ )
2367
+
2368
+ def initialize_ga_population(self):
2369
+ return [np.random.randn(4096) for _ in range(500)]
2370
+
2371
+ def run_snn(self, x):
2372
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2373
+ output = self.snn(input_tensor)
2374
+ print("SNN Output:", output)
2375
+ return output
2376
+
2377
+ def run_rnn(self, x):
2378
+ h0 = torch.zeros(5, x.size(0), 2048)
2379
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2380
+ output, hn = self.rnn(input_tensor, h0)
2381
+ print("RNN Output:", output)
2382
+ return output
2383
+
2384
+ def run_cnn(self, x):
2385
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
2386
+ output = self.cnn(input_tensor)
2387
+ print("CNN Output:", output)
2388
+ return output
2389
+
2390
+ def run_fnn(self, x):
2391
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2392
+ output = self.fnn(input_tensor)
2393
+ print("FNN Output:", output)
2394
+ return output
2395
+
2396
+ def run_ga(self, fitness_func):
2397
+ for generation in range(200):
2398
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
2399
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
2400
+ self.ga_population = sorted_population[:250] + [
2401
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
2402
+ ]
2403
+ best_fitness = max(fitness_scores)
2404
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
2405
+ return max(self.ga_population, key=fitness_func)
2406
+
2407
+ def consciousness_loop(self, input_data, mode="snn"):
2408
+ feedback = self.memory.get(mode, None)
2409
+ if feedback is not None:
2410
+ input_data = np.concatenate((input_data, feedback), axis=-1)
2411
+ if mode == "snn":
2412
+ output = self.run_snn(input_data)
2413
+ elif mode == "rnn":
2414
+ output = self.run_rnn(input_data)
2415
+ elif mode == "cnn":
2416
+ output = self.run_cnn(input_data)
2417
+ elif mode == "fnn":
2418
+ output = self.run_fnn(input_data)
2419
+ else:
2420
+ raise ValueError("Invalid mode")
2421
+ self.memory[mode] = output.detach().numpy()
2422
+ return output
2423
+
2424
+ supermassive_nn = ConsciousSupermassiveNN20()
2425
+
2426
+
2427
+
2428
+
2429
+ def respond(message, history, max_tokens, temperature, top_p):
2430
+ messages = [{"role": "system", "content": system_prompt}]
2431
+ for val in history:
2432
+ if val[0]:
2433
+ messages.append({"role": "user", "content": val[0]})
2434
+ if val[1]:
2435
+ messages.append({"role": "assistant", "content": val[1]})
2436
+ messages.append({"role": "user", "content": message})
2437
+ response = ""
2438
+ for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
2439
+ token = message.choices[0].delta.content
2440
+ response += token
2441
+ yield response
2442
+
2443
+
2444
+ css = """
2445
+ #chat-interface {
2446
+ animation: pulse 1.5s infinite, ripple 2s infinite, glass 3s infinite alternate;
2447
+ }
2448
+
2449
+ @keyframes pulse {
2450
+ 0% { transform: scale(1); opacity: 1; }
2451
+ 25% { transform: scale(1.05); opacity: 0.9; }
2452
+ 50% { transform: scale(1); opacity: 1; }
2453
+ 75% { transform: scale(1.05); opacity: 0.9; }
2454
+ 100% { transform: scale(1); opacity: 1; }
2455
+ }
2456
+
2457
+ @keyframes ripple {
2458
+ 0% {
2459
+ transform: scale(1);
2460
+ box-shadow: 0 0 0 0 rgba(0, 150, 255, 0.6);
2461
+ }
2462
+ 50% {
2463
+ transform: scale(1.2);
2464
+ box-shadow: 0 0 30px 20px rgba(0, 150, 255, 0.8);
2465
+ }
2466
+ 100% {
2467
+ transform: scale(1);
2468
+ box-shadow: 0 0 0 0 rgba(0, 150, 255, 0.6);
2469
+ }
2470
+ }
2471
+
2472
+ @keyframes glass {
2473
+ 0% { background-color: rgba(0, 102, 255, 0.5); border-radius: 15px; }
2474
+ 25% { background-color: rgba(0, 150, 255, 0.7); border-radius: 20px; }
2475
+ 50% { background-color: rgba(0, 200, 255, 1); border-radius: 25px; }
2476
+ 75% { background-color: rgba(0, 150, 255, 0.7); border-radius: 30px; }
2477
+ 100% { background-color: rgba(0, 102, 255, 0.5); border-radius: 35px; }
2478
+ }
2479
+
2480
+ body {
2481
+ background-color: #001f2d;
2482
+ font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
2483
+ color: #fff;
2484
+ }
2485
+
2486
+ .gradio-container {
2487
+ backdrop-filter: blur(10px);
2488
+ border-radius: 20px;
2489
+ padding: 20px;
2490
+ box-shadow: 0px 0px 30px rgba(0, 102, 255, 0.5);
2491
+ background: rgba(0, 0, 0, 0.5);
2492
+ transition: background 1s, border-radius 1s;
2493
+ position: relative;
2494
+ }
2495
+
2496
+ .gradio-container::before {
2497
+ content: "";
2498
+ position: absolute;
2499
+ top: 0;
2500
+ left: 0;
2501
+ right: 0;
2502
+ bottom: 0;
2503
+ border: 2px solid rgba(0, 150, 255, 0.8);
2504
+ border-radius: 20px;
2505
+ z-index: -1;
2506
+ box-shadow: 0 0 20px 5px rgba(0, 150, 255, 0.7);
2507
+ }
2508
+
2509
+ .gradio-input {
2510
+ background-color: rgba(0, 102, 255, 0.3);
2511
+ border: 2px solid rgba(0, 102, 255, 0.6);
2512
+ border-radius: 10px;
2513
+ color: #fff;
2514
+ font-size: 16px;
2515
+ transition: background-color 0.5s, border 0.5s;
2516
+ }
2517
+
2518
+ .gradio-input:focus {
2519
+ background-color: rgba(0, 102, 255, 0.5);
2520
+ border: 2px solid rgba(0, 150, 255, 0.8);
2521
+ }
2522
+
2523
+ .gradio-button {
2524
+ background: rgba(0, 102, 255, 0.6);
2525
+ border: 2px solid rgba(0, 102, 255, 1);
2526
+ border-radius: 12px;
2527
+ color: #fff;
2528
+ font-size: 18px;
2529
+ transition: background 0.3s, transform 0.3s;
2530
+ }
2531
+
2532
+ .gradio-button:hover {
2533
+ background: rgba(0, 150, 255, 1);
2534
+ transform: scale(1.05);
2535
+ }
2536
+
2537
+ .gradio-button:active {
2538
+ background: rgba(0, 200, 255, 1);
2539
+ transform: scale(0.95);
2540
+ }
2541
+
2542
+ .gradio-slider {
2543
+ color: #fff;
2544
+ }
2545
+
2546
+ .gradio-slider .slider-container {
2547
+ background: rgba(0, 102, 255, 0.3);
2548
+ border-radius: 8px;
2549
+ border: 1px solid rgba(0, 102, 255, 0.5);
2550
+ }
2551
+
2552
+ .gradio-slider .slider-container .gradio-slider__track {
2553
+ background: rgba(0, 150, 255, 0.5);
2554
+ }
2555
+
2556
+ .gradio-slider .slider-container .gradio-slider__thumb {
2557
+ background-color: rgba(0, 200, 255, 1);
2558
+ }
2559
+ """
2560
+
2561
  demo = gr.ChatInterface(
2562
+ fn=respond,
 
 
2563
  save_history=True,
2564
  show_progress="full",
2565
  flagging_mode="manual",
2566
  editable=True,
2567
+ additional_inputs=[
2568
+ gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="📏Z3ta's Maximum Response Length📏"),
2569
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="👨‍🎨Z3ta's Creativity👨‍🎨"),
2570
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="🧠Z3ta's Neural Activity🧠")
2571
+ ],
2572
+ theme="TejAndrewsACC/zetaofficalthemeacc",
2573
+ css=css
2574
  )
2575
 
2576
  if __name__ == "__main__":
2577
+ demo.launch(share=True)
2578
+
2579
+
2580
+