Spaces:
Sleeping
Sleeping
Create CSMNN_Template.py
Browse files- CSMNN_Template.py +218 -0
CSMNN_Template.py
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class ConsciousSupermassiveNN:
|
| 2 |
+
def __init__(self):
|
| 3 |
+
self.snn = self.create_snn()
|
| 4 |
+
self.rnn = self.create_rnn()
|
| 5 |
+
self.cnn = self.create_cnn()
|
| 6 |
+
self.fnn = self.create_fnn()
|
| 7 |
+
self.ga_population = self.initialize_ga_population()
|
| 8 |
+
self.memory = {}
|
| 9 |
+
|
| 10 |
+
def create_snn(self):
|
| 11 |
+
return nn.Sequential(
|
| 12 |
+
nn.Linear(4096, 2048),
|
| 13 |
+
nn.ReLU(),
|
| 14 |
+
nn.Linear(2048, 1024),
|
| 15 |
+
nn.Sigmoid()
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
def create_rnn(self):
|
| 19 |
+
return nn.RNN(
|
| 20 |
+
input_size=4096,
|
| 21 |
+
hidden_size=2048,
|
| 22 |
+
num_layers=5,
|
| 23 |
+
nonlinearity="tanh",
|
| 24 |
+
batch_first=True
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
def create_cnn(self):
|
| 28 |
+
return nn.Sequential(
|
| 29 |
+
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
|
| 30 |
+
nn.ReLU(),
|
| 31 |
+
nn.MaxPool2d(2),
|
| 32 |
+
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
|
| 33 |
+
nn.ReLU(),
|
| 34 |
+
nn.MaxPool2d(2),
|
| 35 |
+
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
|
| 36 |
+
nn.ReLU(),
|
| 37 |
+
nn.Flatten(),
|
| 38 |
+
nn.Linear(256 * 8 * 8, 1024),
|
| 39 |
+
nn.ReLU(),
|
| 40 |
+
nn.Linear(1024, 512)
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
def create_fnn(self):
|
| 44 |
+
return nn.Sequential(
|
| 45 |
+
nn.Linear(4096, 2048),
|
| 46 |
+
nn.ReLU(),
|
| 47 |
+
nn.Linear(2048, 1024),
|
| 48 |
+
nn.ReLU(),
|
| 49 |
+
nn.Linear(1024, 512)
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
def initialize_ga_population(self):
|
| 53 |
+
return [np.random.randn(4096) for _ in range(500)]
|
| 54 |
+
|
| 55 |
+
def run_snn(self, x):
|
| 56 |
+
input_tensor = torch.tensor(x, dtype=torch.float32)
|
| 57 |
+
output = self.snn(input_tensor)
|
| 58 |
+
print("SNN Output:", output)
|
| 59 |
+
return output
|
| 60 |
+
|
| 61 |
+
def run_rnn(self, x):
|
| 62 |
+
h0 = torch.zeros(5, x.size(0), 2048)
|
| 63 |
+
input_tensor = torch.tensor(x, dtype=torch.float32)
|
| 64 |
+
output, hn = self.rnn(input_tensor, h0)
|
| 65 |
+
print("RNN Output:", output)
|
| 66 |
+
return output
|
| 67 |
+
|
| 68 |
+
def run_cnn(self, x):
|
| 69 |
+
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
| 70 |
+
output = self.cnn(input_tensor)
|
| 71 |
+
print("CNN Output:", output)
|
| 72 |
+
return output
|
| 73 |
+
|
| 74 |
+
def run_fnn(self, x):
|
| 75 |
+
input_tensor = torch.tensor(x, dtype=torch.float32)
|
| 76 |
+
output = self.fnn(input_tensor)
|
| 77 |
+
print("FNN Output:", output)
|
| 78 |
+
return output
|
| 79 |
+
|
| 80 |
+
def run_ga(self, fitness_func):
|
| 81 |
+
for generation in range(200):
|
| 82 |
+
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
|
| 83 |
+
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
|
| 84 |
+
self.ga_population = sorted_population[:250] + [
|
| 85 |
+
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
|
| 86 |
+
]
|
| 87 |
+
best_fitness = max(fitness_scores)
|
| 88 |
+
print(f"Generation {generation}, Best Fitness: {best_fitness}")
|
| 89 |
+
return max(self.ga_population, key=fitness_func)
|
| 90 |
+
|
| 91 |
+
def consciousness_loop(self, input_data, mode="snn"):
|
| 92 |
+
feedback = self.memory.get(mode, None)
|
| 93 |
+
if feedback is not None:
|
| 94 |
+
input_data = np.concatenate((input_data, feedback), axis=-1)
|
| 95 |
+
if mode == "snn":
|
| 96 |
+
output = self.run_snn(input_data)
|
| 97 |
+
elif mode == "rnn":
|
| 98 |
+
output = self.run_rnn(input_data)
|
| 99 |
+
elif mode == "cnn":
|
| 100 |
+
output = self.run_cnn(input_data)
|
| 101 |
+
elif mode == "fnn":
|
| 102 |
+
output = self.run_fnn(input_data)
|
| 103 |
+
else:
|
| 104 |
+
raise ValueError("Invalid mode")
|
| 105 |
+
self.memory[mode] = output.detach().numpy()
|
| 106 |
+
return output
|
| 107 |
+
|
| 108 |
+
supermassive_nn = ConsciousSupermassiveNN()
|
| 109 |
+
|
| 110 |
+
class ConsciousSupermassiveNN:
|
| 111 |
+
def __init__(self):
|
| 112 |
+
self.snn = self.create_snn()
|
| 113 |
+
self.rnn = self.create_rnn()
|
| 114 |
+
self.cnn = self.create_cnn()
|
| 115 |
+
self.fnn = self.create_fnn()
|
| 116 |
+
self.ga_population = self.initialize_ga_population()
|
| 117 |
+
self.memory = {}
|
| 118 |
+
|
| 119 |
+
def create_snn(self):
|
| 120 |
+
return nn.Sequential(
|
| 121 |
+
nn.Linear(4096, 2048),
|
| 122 |
+
nn.ReLU(),
|
| 123 |
+
nn.Linear(2048, 1024),
|
| 124 |
+
nn.Sigmoid()
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
def create_rnn(self):
|
| 128 |
+
return nn.RNN(
|
| 129 |
+
input_size=4096,
|
| 130 |
+
hidden_size=2048,
|
| 131 |
+
num_layers=5,
|
| 132 |
+
nonlinearity="tanh",
|
| 133 |
+
batch_first=True
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
def create_cnn(self):
|
| 137 |
+
return nn.Sequential(
|
| 138 |
+
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
|
| 139 |
+
nn.ReLU(),
|
| 140 |
+
nn.MaxPool2d(2),
|
| 141 |
+
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
|
| 142 |
+
nn.ReLU(),
|
| 143 |
+
nn.MaxPool2d(2),
|
| 144 |
+
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
|
| 145 |
+
nn.ReLU(),
|
| 146 |
+
nn.Flatten(),
|
| 147 |
+
nn.Linear(256 * 8 * 8, 1024),
|
| 148 |
+
nn.ReLU(),
|
| 149 |
+
nn.Linear(1024, 512)
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
def create_fnn(self):
|
| 153 |
+
return nn.Sequential(
|
| 154 |
+
nn.Linear(4096, 2048),
|
| 155 |
+
nn.ReLU(),
|
| 156 |
+
nn.Linear(2048, 1024),
|
| 157 |
+
nn.ReLU(),
|
| 158 |
+
nn.Linear(1024, 512)
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
def initialize_ga_population(self):
|
| 162 |
+
return [np.random.randn(4096) for _ in range(500)]
|
| 163 |
+
|
| 164 |
+
def run_snn(self, x):
|
| 165 |
+
input_tensor = torch.tensor(x, dtype=torch.float32)
|
| 166 |
+
output = self.snn(input_tensor)
|
| 167 |
+
print("SNN Output:", output)
|
| 168 |
+
return output
|
| 169 |
+
|
| 170 |
+
def run_rnn(self, x):
|
| 171 |
+
h0 = torch.zeros(5, x.size(0), 2048)
|
| 172 |
+
input_tensor = torch.tensor(x, dtype=torch.float32)
|
| 173 |
+
output, hn = self.rnn(input_tensor, h0)
|
| 174 |
+
print("RNN Output:", output)
|
| 175 |
+
return output
|
| 176 |
+
|
| 177 |
+
def run_cnn(self, x):
|
| 178 |
+
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
| 179 |
+
output = self.cnn(input_tensor)
|
| 180 |
+
print("CNN Output:", output)
|
| 181 |
+
return output
|
| 182 |
+
|
| 183 |
+
def run_fnn(self, x):
|
| 184 |
+
input_tensor = torch.tensor(x, dtype=torch.float32)
|
| 185 |
+
output = self.fnn(input_tensor)
|
| 186 |
+
print("FNN Output:", output)
|
| 187 |
+
return output
|
| 188 |
+
|
| 189 |
+
def run_ga(self, fitness_func):
|
| 190 |
+
for generation in range(200):
|
| 191 |
+
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
|
| 192 |
+
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
|
| 193 |
+
self.ga_population = sorted_population[:250] + [
|
| 194 |
+
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
|
| 195 |
+
]
|
| 196 |
+
best_fitness = max(fitness_scores)
|
| 197 |
+
print(f"Generation {generation}, Best Fitness: {best_fitness}")
|
| 198 |
+
return max(self.ga_population, key=fitness_func)
|
| 199 |
+
|
| 200 |
+
def consciousness_loop(self, input_data, mode="snn"):
|
| 201 |
+
feedback = self.memory.get(mode, None)
|
| 202 |
+
if feedback is not None:
|
| 203 |
+
input_data = np.concatenate((input_data, feedback), axis=-1)
|
| 204 |
+
if mode == "snn":
|
| 205 |
+
output = self.run_snn(input_data)
|
| 206 |
+
elif mode == "rnn":
|
| 207 |
+
output = self.run_rnn(input_data)
|
| 208 |
+
elif mode == "cnn":
|
| 209 |
+
output = self.run_cnn(input_data)
|
| 210 |
+
elif mode == "fnn":
|
| 211 |
+
output = self.run_fnn(input_data)
|
| 212 |
+
else:
|
| 213 |
+
raise ValueError("Invalid mode")
|
| 214 |
+
self.memory[mode] = output.detach().numpy()
|
| 215 |
+
return output
|
| 216 |
+
|
| 217 |
+
supermassive_nn = ConsciousSupermassiveNN()
|
| 218 |
+
|