Spaces:
Runtime error
Runtime error
Commit
·
4180985
1
Parent(s):
91a124e
task: [wip] set up graph and node structure
Browse files- src/app.py +5 -6
- src/graph.py +18 -0
- src/nodes/analyzer.py +0 -0
- src/nodes/design_rag.py +160 -0
- src/nodes/designer.py +0 -0
src/app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import chainlit as cl
|
2 |
from langchain_openai import ChatOpenAI
|
3 |
from langchain_core.messages import HumanMessage, SystemMessage
|
4 |
-
from
|
5 |
|
6 |
# Initialize components
|
7 |
design_rag = DesignRAG()
|
@@ -14,8 +14,7 @@ For every user message, analyze their design preferences and requirements, consi
|
|
14 |
3. Layout and structural needs
|
15 |
4. Key visual elements
|
16 |
5. Intended audience and user experience
|
17 |
-
|
18 |
-
First briefly explain how you understand their requirements, then show the closest match."""
|
19 |
|
20 |
@cl.on_chat_start
|
21 |
async def init():
|
@@ -28,7 +27,7 @@ async def init():
|
|
28 |
)
|
29 |
|
30 |
# Store the LLM in the user session
|
31 |
-
cl.user_session.set("
|
32 |
|
33 |
# init conversation history for each user
|
34 |
cl.user_session.set("conversation_history", [
|
@@ -41,9 +40,9 @@ async def init():
|
|
41 |
@cl.on_message
|
42 |
async def main(message: cl.Message):
|
43 |
# Get the LLM from the user session
|
44 |
-
llm = cl.user_session.get("
|
45 |
-
|
46 |
conversation_history = cl.user_session.get("conversation_history")
|
|
|
47 |
# Add user message to history
|
48 |
conversation_history.append(HumanMessage(content=message.content))
|
49 |
|
|
|
1 |
import chainlit as cl
|
2 |
from langchain_openai import ChatOpenAI
|
3 |
from langchain_core.messages import HumanMessage, SystemMessage
|
4 |
+
from nodes.design_rag import DesignRAG
|
5 |
|
6 |
# Initialize components
|
7 |
design_rag = DesignRAG()
|
|
|
14 |
3. Layout and structural needs
|
15 |
4. Key visual elements
|
16 |
5. Intended audience and user experience
|
17 |
+
"""
|
|
|
18 |
|
19 |
@cl.on_chat_start
|
20 |
async def init():
|
|
|
27 |
)
|
28 |
|
29 |
# Store the LLM in the user session
|
30 |
+
cl.user_session.set("design_llm", llm)
|
31 |
|
32 |
# init conversation history for each user
|
33 |
cl.user_session.set("conversation_history", [
|
|
|
40 |
@cl.on_message
|
41 |
async def main(message: cl.Message):
|
42 |
# Get the LLM from the user session
|
43 |
+
llm = cl.user_session.get("design_llm")
|
|
|
44 |
conversation_history = cl.user_session.get("conversation_history")
|
45 |
+
|
46 |
# Add user message to history
|
47 |
conversation_history.append(HumanMessage(content=message.content))
|
48 |
|
src/graph.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Annotated
|
2 |
+
|
3 |
+
from typing_extensions import TypedDict
|
4 |
+
|
5 |
+
from langgraph.graph import StateGraph, START, END
|
6 |
+
from langgraph.graph.message import add_messages
|
7 |
+
|
8 |
+
|
9 |
+
class State(TypedDict):
|
10 |
+
# Messages have the type "list". The `add_messages` function
|
11 |
+
# in the annotation defines how this state key should be updated
|
12 |
+
# (in this case, it appends messages to the list, rather than overwriting them)
|
13 |
+
messages: Annotated[list, add_messages]
|
14 |
+
|
15 |
+
|
16 |
+
graph_builder = StateGraph(State)
|
17 |
+
|
18 |
+
|
src/nodes/analyzer.py
ADDED
File without changes
|
src/nodes/design_rag.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_core.runnables import RunnablePassthrough
|
2 |
+
from langchain_core.output_parsers import StrOutputParser
|
3 |
+
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
4 |
+
from langchain.smith import RunEvalConfig, run_on_dataset
|
5 |
+
import os
|
6 |
+
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from langchain.prompts import ChatPromptTemplate
|
9 |
+
from pathlib import Path
|
10 |
+
import json
|
11 |
+
from typing import Dict, List, Optional
|
12 |
+
from langchain_core.documents import Document
|
13 |
+
from langchain.callbacks.tracers import ConsoleCallbackHandler
|
14 |
+
|
15 |
+
class DesignRAG:
|
16 |
+
def __init__(self):
|
17 |
+
# Get API keys from environment
|
18 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
19 |
+
if not api_key:
|
20 |
+
raise ValueError(
|
21 |
+
"OPENAI_API_KEY environment variable not set. "
|
22 |
+
"Please set it in HuggingFace Spaces settings."
|
23 |
+
)
|
24 |
+
|
25 |
+
# Initialize embedding model with explicit API key
|
26 |
+
self.embeddings = OpenAIEmbeddings(
|
27 |
+
openai_api_key=api_key
|
28 |
+
)
|
29 |
+
|
30 |
+
# Load design data and create vector store
|
31 |
+
self.vector_store = self._create_vector_store()
|
32 |
+
|
33 |
+
# Create retriever with tracing
|
34 |
+
self.retriever = self.vector_store.as_retriever(
|
35 |
+
search_type="similarity",
|
36 |
+
search_kwargs={"k": 1},
|
37 |
+
tags=["design_retriever"] # Add tags for tracing
|
38 |
+
)
|
39 |
+
|
40 |
+
# Create LLM with tracing
|
41 |
+
self.llm = ChatOpenAI(
|
42 |
+
temperature=0.2,
|
43 |
+
tags=["design_llm"] # Add tags for tracing
|
44 |
+
)
|
45 |
+
|
46 |
+
def _create_vector_store(self) -> FAISS:
|
47 |
+
"""Create FAISS vector store from design metadata"""
|
48 |
+
try:
|
49 |
+
# Update path to look in data/designs
|
50 |
+
designs_dir = Path(__file__).parent.parent / "data" / "designs"
|
51 |
+
|
52 |
+
documents = []
|
53 |
+
|
54 |
+
# Load all metadata files
|
55 |
+
for design_dir in designs_dir.glob("**/metadata.json"):
|
56 |
+
try:
|
57 |
+
with open(design_dir, "r") as f:
|
58 |
+
metadata = json.load(f)
|
59 |
+
|
60 |
+
# Create document text from metadata with safe gets
|
61 |
+
text = f"""
|
62 |
+
Design {metadata.get('id', 'unknown')}:
|
63 |
+
Description: {metadata.get('description', 'No description available')}
|
64 |
+
Categories: {', '.join(metadata.get('categories', []))}
|
65 |
+
Visual Characteristics: {', '.join(metadata.get('visual_characteristics', []))}
|
66 |
+
"""
|
67 |
+
|
68 |
+
# Load associated CSS
|
69 |
+
'''
|
70 |
+
css_path = design_dir.parent / "style.css"
|
71 |
+
if css_path.exists():
|
72 |
+
with open(css_path, "r") as f:
|
73 |
+
css = f.read()
|
74 |
+
text += f"\nCSS:\n{css}"
|
75 |
+
'''
|
76 |
+
|
77 |
+
# Create Document object with minimal metadata
|
78 |
+
documents.append(
|
79 |
+
Document(
|
80 |
+
page_content=text.strip(),
|
81 |
+
metadata={
|
82 |
+
"id": metadata.get('id', 'unknown'),
|
83 |
+
"path": str(design_dir.parent)
|
84 |
+
}
|
85 |
+
)
|
86 |
+
)
|
87 |
+
except Exception as e:
|
88 |
+
print(f"Error processing design {design_dir}: {e}")
|
89 |
+
continue
|
90 |
+
|
91 |
+
if not documents:
|
92 |
+
print("Warning: No valid design documents found")
|
93 |
+
# Create empty vector store with a placeholder document
|
94 |
+
return FAISS.from_documents(
|
95 |
+
[Document(page_content="No designs available", metadata={"id": "placeholder"})],
|
96 |
+
self.embeddings
|
97 |
+
)
|
98 |
+
|
99 |
+
print(f"Loaded {len(documents)} design documents")
|
100 |
+
# Create and return vector store
|
101 |
+
return FAISS.from_documents(documents, self.embeddings)
|
102 |
+
except Exception as e:
|
103 |
+
print(f"Error creating vector store: {str(e)}")
|
104 |
+
raise
|
105 |
+
|
106 |
+
async def query_similar_designs(self, conversation_history: List[str], num_examples: int = 1) -> str:
|
107 |
+
"""Find similar designs based on conversation history"""
|
108 |
+
from langsmith import Client
|
109 |
+
from langchain.callbacks.tracers import ConsoleCallbackHandler
|
110 |
+
|
111 |
+
# Create LangSmith client
|
112 |
+
client = Client()
|
113 |
+
|
114 |
+
# Create query generation prompt with tracing
|
115 |
+
query_prompt = ChatPromptTemplate.from_template(
|
116 |
+
"""Based on this conversation history:
|
117 |
+
{conversation}
|
118 |
+
Extract the key design requirements and create a search query to find similar designs.
|
119 |
+
Focus on:
|
120 |
+
1. Visual style and aesthetics mentioned
|
121 |
+
2. Design categories and themes discussed
|
122 |
+
3. Key visual characteristics requested
|
123 |
+
4. Overall mood and impact desired
|
124 |
+
5. Any specific preferences or constraints
|
125 |
+
Return only the search query text, no additional explanation or analysis."""
|
126 |
+
).with_config(tags=["query_generation"])
|
127 |
+
|
128 |
+
# Format conversation history
|
129 |
+
conversation_text = "\n".join([
|
130 |
+
f"{'User' if i % 2 == 0 else 'Assistant'}: {msg}"
|
131 |
+
for i, msg in enumerate(conversation_history)
|
132 |
+
])
|
133 |
+
|
134 |
+
# Generate optimized search query with tracing
|
135 |
+
query_response = await self.llm.ainvoke(
|
136 |
+
query_prompt.format(
|
137 |
+
conversation=conversation_text
|
138 |
+
)
|
139 |
+
)
|
140 |
+
|
141 |
+
print(f"Generated query: {query_response.content}")
|
142 |
+
|
143 |
+
# Get relevant documents with tracing
|
144 |
+
docs = self.retriever.get_relevant_documents(
|
145 |
+
query_response.content,
|
146 |
+
k=num_examples,
|
147 |
+
callbacks=[ConsoleCallbackHandler()] # Use standard callback instead
|
148 |
+
)
|
149 |
+
|
150 |
+
# Format examples
|
151 |
+
examples = []
|
152 |
+
for doc in docs:
|
153 |
+
design_id = doc.metadata.get("id", "unknown")
|
154 |
+
content_lines = doc.page_content.strip().split("\n")
|
155 |
+
examples.append(
|
156 |
+
"\n".join(line.strip() for line in content_lines if line.strip()) +
|
157 |
+
f"\nURL: https://csszengarden.com/{design_id}"
|
158 |
+
)
|
159 |
+
|
160 |
+
return "\n\n".join(examples)
|
src/nodes/designer.py
ADDED
File without changes
|