File size: 12,355 Bytes
e64fe22
 
 
 
bb136f1
e64fe22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc083dc
e64fe22
 
 
 
 
 
bb136f1
 
caba535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64fe22
 
 
 
bb136f1
e64fe22
 
 
 
bb136f1
 
 
caba535
 
e64fe22
bb136f1
 
 
 
 
 
caba535
bb136f1
e64fe22
bb136f1
 
e64fe22
 
 
 
 
 
 
 
 
 
 
bb136f1
e64fe22
 
 
 
 
bb136f1
e64fe22
 
bb136f1
e64fe22
 
 
 
 
 
 
bb136f1
 
 
 
 
e64fe22
 
 
 
 
 
 
 
 
 
 
 
 
bb136f1
e64fe22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb136f1
e64fe22
bb136f1
e64fe22
 
 
bb136f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64fe22
 
bb136f1
e64fe22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb136f1
 
 
 
 
 
 
 
 
 
e64fe22
 
 
 
 
 
 
 
 
 
 
 
bb136f1
e64fe22
 
 
bb136f1
 
 
 
 
 
 
 
 
e64fe22
 
 
 
 
bb136f1
 
 
 
 
e64fe22
 
 
 
 
 
 
 
 
 
 
bb136f1
e64fe22
bb136f1
 
 
 
 
 
 
 
 
 
 
 
 
e64fe22
 
 
 
 
bb136f1
e64fe22
 
 
 
 
bb136f1
 
 
 
 
e64fe22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import getpass\n",
    "\n",
    "\n",
    "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Add tools later"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loaded 82 design documents\n",
      "Testing RAG retriever with requirements:\n",
      "\n",
      "Retrieved Designs:\n",
      "----------------------------------------\n",
      "Generated query: \"vintage classic easy to use grandmother love design\"\n",
      "Design 180:\n",
      "Description: This design employs a vintage newspaper aesthetic with a classic serif typography that evokes an old-world charm, utilizing sepia-toned paper backgrounds to enhance its nostalgic feel. The layout is text-heavy with a deliberate obfuscation, reflecting a layered collage effect. Its balanced placement keeps the focus central, inviting closer inspection and interaction.\n",
      "Categories: Vintage, Nostalgic, Typography, Collage, Editorial\n",
      "Visual Characteristics: Sepia tone, Serif typography, Textured background, Layered elements, Central focus\n",
      "URL: https://csszengarden.com/180\n",
      "\n",
      "Design 182:\n",
      "Description: The design creatively utilizes a retro theme with vinyl records as the prominent visual element to evoke a sense of nostalgia and classic style, complemented by a muted green color palette that brings harmony and balance. Handwritten and vintage-style typography enhance the retro aesthetic, while background illustrations and decorative elements like stars add whimsy and depth to the composition.\n",
      "Categories: Retro, Nostalgic, Music-themed, Decorative, Vintage\n",
      "Visual Characteristics: Vinyl Records, Muted Green Palette, Handwritten Typography, Background Illustrations, Decorative Elements\n",
      "URL: https://csszengarden.com/182\n",
      "\n",
      "Design 194:\n",
      "Description: This design exudes a minimalist elegance with a muted, earthy color palette and a clean layout, embodying a sense of calm and sophistication. The subtle use of textures and classic serif typography enhances the refined aesthetic, while the centered alignment and generous spacing contribute to a relaxed readability. The incorporation of a delicate floral illustration adds a touch of organic charm, making the design feel both timeless and inviting.\n",
      "Categories: Minimalism, Elegant, Organic, Sophisticated, Classic\n",
      "Visual Characteristics: Muted Color Palette, Serif Typography, Centered Layout, Generous Spacing, Floral Illustration\n",
      "URL: https://csszengarden.com/194\n",
      "\n",
      "Design 212:\n",
      "Description: The design features a retro aesthetic using a muted color palette of browns and creams, creating a nostalgic and vintage feel. The asymmetrical layout and bold typography contribute to the visual hierarchy, guiding the viewer through the content effortlessly. Illustrations with a mid-century modern style add character, merging traditional design elements with contemporary functionality.\n",
      "Categories: Retro, Typography, Illustration, Vintage Style, Educational\n",
      "Visual Characteristics: Muted Color Palette, Asymmetrical Layout, Bold Typography, Retro Illustrations, Functional Design\n",
      "URL: https://csszengarden.com/212\n"
     ]
    }
   ],
   "source": [
    "#from tools.design_retriever import DesignRetrieverTool\n",
    "from chains.design_rag import DesignRAG\n",
    "\n",
    "# Initialize DesignRAG and create the tool\n",
    "design_rag = DesignRAG()\n",
    "#design_retriever = DesignRetrieverTool(rag=design_rag)\n",
    "\n",
    "test_requirements = {\n",
    "    \"I want a design that is vintage and classic, something easy to use that a grandmother would love\"\n",
    "    }\n",
    "\n",
    "# Test the retriever\n",
    "async def test_rag():\n",
    "    print(\"Testing RAG retriever with requirements:\")\n",
    "    print(\"\\nRetrieved Designs:\")\n",
    "    print(\"----------------------------------------\")\n",
    "    \n",
    "    results = await design_rag.query_similar_designs(test_requirements, 2)\n",
    "    print(results)\n",
    "\n",
    "# Run the test\n",
    "await test_rag()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Pick a model good for chat and tools"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "RunnableBinding(bound=ChatOpenAI(client=<openai.resources.chat.completions.completions.Completions object at 0x1245518d0>, async_client=<openai.resources.chat.completions.completions.AsyncCompletions object at 0x124548e50>, root_client=<openai.OpenAI object at 0x1108f9310>, root_async_client=<openai.AsyncOpenAI object at 0x115d92090>, model_name='gpt-4o', temperature=0.0, model_kwargs={}, openai_api_key=SecretStr('**********'), streaming=True), kwargs={'tools': [{'type': 'function', 'function': {'name': 'design_retriever', 'description': 'Retrieves similar designs based on style requirements', 'parameters': {'properties': {'requirements': {'type': 'object'}, 'num_examples': {'default': 3, 'type': 'integer'}}, 'required': ['requirements'], 'type': 'object'}}}]}, config={}, config_factories=[])"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from langchain_openai import ChatOpenAI\n",
    "\n",
    "model = ChatOpenAI(\n",
    "    model=\"gpt-4o\", \n",
    "    temperature=0,\n",
    "    streaming=True\n",
    ")\n",
    "\n",
    "model.bind_tools(tool_belt)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Initialize state\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import TypedDict, Annotated\n",
    "from langgraph.graph.message import add_messages\n",
    "\n",
    "class AgentState(TypedDict):\n",
    "  messages: Annotated[list, add_messages]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Set up the nodes and graph\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langgraph.prebuilt import ToolNode\n",
    "from langgraph.graph import StateGraph, END\n",
    "from langchain_core.messages import HumanMessage, SystemMessage\n",
    "\n",
    "system_message = SystemMessage(content=\"\"\"You are a helpful design assistant that can retrieve and analyze design examples. \n",
    "When a user describes their design preferences or requirements, use the design_retriever tool to find relevant examples.\n",
    "\n",
    "Always use the design_retriever tool when:\n",
    "- A user describes specific design requirements\n",
    "- A user asks to see similar designs\n",
    "- You need to find design inspiration based on user preferences\n",
    "\n",
    "Format the requirements as a dictionary with these keys:\n",
    "- style_description: Brief description of desired visual style\n",
    "- key_elements: List of important visual elements\n",
    "- color_scheme: Description of colors\n",
    "- layout_preferences: Layout requirements\n",
    "- mood: Desired emotional impact\n",
    "\"\"\")\n",
    "\n",
    "def call_model(state):\n",
    "  messages = [system_message] + state[\"messages\"]\n",
    "  response = model.invoke(messages)\n",
    "  return {\"messages\" : [response]}\n",
    "\n",
    "tool_node = ToolNode(tool_belt)\n",
    "\n",
    "uncompiled_graph = StateGraph(AgentState)\n",
    "\n",
    "uncompiled_graph.add_node(\"agent\", call_model)\n",
    "uncompiled_graph.add_node(\"action\", tool_node)\n",
    "uncompiled_graph.set_entry_point(\"agent\")\n",
    "\n",
    "\n",
    "def should_continue(state):\n",
    "  last_message = state[\"messages\"][-1]\n",
    "\n",
    "  if last_message.tool_calls:\n",
    "    return \"action\"\n",
    "\n",
    "  return END\n",
    "\n",
    "uncompiled_graph.add_conditional_edges(\n",
    "  \"agent\",\n",
    "  should_continue\n",
    ")\n",
    "uncompiled_graph.add_edge(\"action\", \"agent\")\n",
    "\n",
    "graph = uncompiled_graph.compile()\n",
    "\n",
    "#formatted chain\n",
    "\n",
    "def convert_inputs(input_object):\n",
    "  return {\"messages\" : [HumanMessage(content=input_object[\"question\"])]}\n",
    "\n",
    "def parse_output(input_state):\n",
    "  return input_state[\"messages\"][-1].content\n",
    "\n",
    "graph_chain = convert_inputs | graph | parse_output\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Try it out!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Receiving update from node: 'agent'\n",
      "[AIMessage(content=\"Hello! I'm here and ready to help you with any design needs or questions you might have. How can I assist you today?\", additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'model_name': 'gpt-4o-2024-08-06', 'system_fingerprint': 'fp_f9f4fb6dbf'}, id='run-4edce0b5-fdec-4d5d-a4a6-92430faca51a-0')]\n",
      "\n",
      "\n",
      "\n"
     ]
    }
   ],
   "source": [
    "from langchain_core.messages import HumanMessage\n",
    "\n",
    "async for chunk in graph.astream({\"messages\" : [HumanMessage(content=\"Hello, how are you?\")]}, stream_mode=\"updates\"):\n",
    "    for node, values in chunk.items():\n",
    "        print(f\"Receiving update from node: '{node}'\")\n",
    "        print(values[\"messages\"])\n",
    "        print(\"\\n\\n\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's see if the RAG tool works."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Receiving update from node: 'agent'\n",
      "[AIMessage(content=\"To find a design that matches your description, I'll use the design_retriever tool. Here are the requirements based on your description:\\n\\n- style_description: Monochromatic with subtle accents\\n- key_elements: Grid-based layout, clear hierarchy\\n- color_scheme: Monochromatic with subtle accent colors\\n- layout_preferences: Grid-based\\n- mood: Professional and sophisticated\\n\\nLet's find some examples for you.\", additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'model_name': 'gpt-4o-2024-08-06', 'system_fingerprint': 'fp_f9f4fb6dbf'}, id='run-8fa2e4af-671c-4c75-82fd-a7b3d6237e54-0')]\n",
      "\n",
      "\n",
      "\n"
     ]
    }
   ],
   "source": [
    "# Create a test message\n",
    "from langchain_core.messages import HumanMessage\n",
    "\n",
    "test_message = HumanMessage(\n",
    "    content=\"\"\"I want to see a design matching this description: \n",
    "    I want it to use a monochromatic color scheme with subtle accent colors. \n",
    "    The layout should be grid-based with clear hierarchy. \n",
    "    The overall mood should be professional and sophisticated.\"\"\"\n",
    ")\n",
    "\n",
    "async for chunk in graph.astream({\"messages\" : [test_message]}, stream_mode=\"updates\"):\n",
    "    for node, values in chunk.items():\n",
    "        print(f\"Receiving update from node: '{node}'\")\n",
    "        print(values[\"messages\"])\n",
    "        print(\"\\n\\n\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}