Spaces:
Sleeping
Sleeping
Commit
·
0f77dce
1
Parent(s):
3db2294
HW15: working app.py
Browse files
app.py
CHANGED
@@ -42,15 +42,18 @@ HF_TOKEN = os.environ["HF_TOKEN"]
|
|
42 |
"""
|
43 |
### 1. CREATE TEXT LOADER AND LOAD DOCUMENTS
|
44 |
### NOTE: PAY ATTENTION TO THE PATH THEY ARE IN.
|
45 |
-
text_loader =
|
46 |
-
documents =
|
47 |
|
48 |
### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS
|
49 |
-
text_splitter =
|
50 |
-
split_documents =
|
51 |
|
52 |
### 3. LOAD HUGGINGFACE EMBEDDINGS
|
53 |
-
hf_embeddings =
|
|
|
|
|
|
|
54 |
|
55 |
async def add_documents_async(vectorstore, documents):
|
56 |
await vectorstore.aadd_documents(documents)
|
@@ -110,17 +113,33 @@ hf_retriever = asyncio.run(run())
|
|
110 |
2. Create a Prompt Template from the String Template
|
111 |
"""
|
112 |
### 1. DEFINE STRING TEMPLATE
|
113 |
-
RAG_PROMPT_TEMPLATE =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
### 2. CREATE PROMPT TEMPLATE
|
116 |
-
rag_prompt =
|
117 |
|
118 |
# -- GENERATION -- #
|
119 |
"""
|
120 |
1. Create a HuggingFaceEndpoint for the LLM
|
121 |
"""
|
122 |
### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
|
123 |
-
hf_llm =
|
|
|
|
|
|
|
|
|
124 |
|
125 |
@cl.author_rename
|
126 |
def rename(original_author: str):
|
@@ -145,7 +164,7 @@ async def start_chat():
|
|
145 |
"""
|
146 |
|
147 |
### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT
|
148 |
-
lcel_rag_chain =
|
149 |
|
150 |
cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
|
151 |
|
|
|
42 |
"""
|
43 |
### 1. CREATE TEXT LOADER AND LOAD DOCUMENTS
|
44 |
### NOTE: PAY ATTENTION TO THE PATH THEY ARE IN.
|
45 |
+
text_loader = TextLoader("data/paul_graham_essays.txt")
|
46 |
+
documents = text_loader.load()
|
47 |
|
48 |
### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS
|
49 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
|
50 |
+
split_documents = text_splitter.split_documents(documents)
|
51 |
|
52 |
### 3. LOAD HUGGINGFACE EMBEDDINGS
|
53 |
+
hf_embeddings = HuggingFaceEndpointEmbeddings(
|
54 |
+
model=HF_EMBED_ENDPOINT,
|
55 |
+
huggingfacehub_api_token=HF_TOKEN
|
56 |
+
)
|
57 |
|
58 |
async def add_documents_async(vectorstore, documents):
|
59 |
await vectorstore.aadd_documents(documents)
|
|
|
113 |
2. Create a Prompt Template from the String Template
|
114 |
"""
|
115 |
### 1. DEFINE STRING TEMPLATE
|
116 |
+
RAG_PROMPT_TEMPLATE = """
|
117 |
+
<|start_header_id|>system<|end_header_id|>
|
118 |
+
You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
|
119 |
+
|
120 |
+
<|start_header_id|>user<|end_header_id|>
|
121 |
+
User Query:
|
122 |
+
{query}
|
123 |
+
|
124 |
+
Context:
|
125 |
+
{context}<|eot_id|>
|
126 |
+
|
127 |
+
<|start_header_id|>assistant<|end_header_id|>
|
128 |
+
"""
|
129 |
|
130 |
### 2. CREATE PROMPT TEMPLATE
|
131 |
+
rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
|
132 |
|
133 |
# -- GENERATION -- #
|
134 |
"""
|
135 |
1. Create a HuggingFaceEndpoint for the LLM
|
136 |
"""
|
137 |
### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
|
138 |
+
hf_llm = HuggingFaceEndpoint(
|
139 |
+
endpoint_url=HF_LLM_ENDPOINT,
|
140 |
+
huggingface_api_token=HF_TOKEN
|
141 |
+
#model_kwargs={"headers": {"Authorization": f"Bearer {HF_TOKEN}"}}
|
142 |
+
)
|
143 |
|
144 |
@cl.author_rename
|
145 |
def rename(original_author: str):
|
|
|
164 |
"""
|
165 |
|
166 |
### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT
|
167 |
+
lcel_rag_chain = {"context": itemgetter("context") | hf_retriever, "query": RunnablePassthrough()} | rag_prompt | hf_llm
|
168 |
|
169 |
cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
|
170 |
|