Technologic101 commited on
Commit
0f77dce
·
1 Parent(s): 3db2294

HW15: working app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -9
app.py CHANGED
@@ -42,15 +42,18 @@ HF_TOKEN = os.environ["HF_TOKEN"]
42
  """
43
  ### 1. CREATE TEXT LOADER AND LOAD DOCUMENTS
44
  ### NOTE: PAY ATTENTION TO THE PATH THEY ARE IN.
45
- text_loader =
46
- documents =
47
 
48
  ### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS
49
- text_splitter =
50
- split_documents =
51
 
52
  ### 3. LOAD HUGGINGFACE EMBEDDINGS
53
- hf_embeddings =
 
 
 
54
 
55
  async def add_documents_async(vectorstore, documents):
56
  await vectorstore.aadd_documents(documents)
@@ -110,17 +113,33 @@ hf_retriever = asyncio.run(run())
110
  2. Create a Prompt Template from the String Template
111
  """
112
  ### 1. DEFINE STRING TEMPLATE
113
- RAG_PROMPT_TEMPLATE =
 
 
 
 
 
 
 
 
 
 
 
 
114
 
115
  ### 2. CREATE PROMPT TEMPLATE
116
- rag_prompt =
117
 
118
  # -- GENERATION -- #
119
  """
120
  1. Create a HuggingFaceEndpoint for the LLM
121
  """
122
  ### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
123
- hf_llm =
 
 
 
 
124
 
125
  @cl.author_rename
126
  def rename(original_author: str):
@@ -145,7 +164,7 @@ async def start_chat():
145
  """
146
 
147
  ### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT
148
- lcel_rag_chain =
149
 
150
  cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
151
 
 
42
  """
43
  ### 1. CREATE TEXT LOADER AND LOAD DOCUMENTS
44
  ### NOTE: PAY ATTENTION TO THE PATH THEY ARE IN.
45
+ text_loader = TextLoader("data/paul_graham_essays.txt")
46
+ documents = text_loader.load()
47
 
48
  ### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS
49
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
50
+ split_documents = text_splitter.split_documents(documents)
51
 
52
  ### 3. LOAD HUGGINGFACE EMBEDDINGS
53
+ hf_embeddings = HuggingFaceEndpointEmbeddings(
54
+ model=HF_EMBED_ENDPOINT,
55
+ huggingfacehub_api_token=HF_TOKEN
56
+ )
57
 
58
  async def add_documents_async(vectorstore, documents):
59
  await vectorstore.aadd_documents(documents)
 
113
  2. Create a Prompt Template from the String Template
114
  """
115
  ### 1. DEFINE STRING TEMPLATE
116
+ RAG_PROMPT_TEMPLATE = """
117
+ <|start_header_id|>system<|end_header_id|>
118
+ You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
119
+
120
+ <|start_header_id|>user<|end_header_id|>
121
+ User Query:
122
+ {query}
123
+
124
+ Context:
125
+ {context}<|eot_id|>
126
+
127
+ <|start_header_id|>assistant<|end_header_id|>
128
+ """
129
 
130
  ### 2. CREATE PROMPT TEMPLATE
131
+ rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
132
 
133
  # -- GENERATION -- #
134
  """
135
  1. Create a HuggingFaceEndpoint for the LLM
136
  """
137
  ### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
138
+ hf_llm = HuggingFaceEndpoint(
139
+ endpoint_url=HF_LLM_ENDPOINT,
140
+ huggingface_api_token=HF_TOKEN
141
+ #model_kwargs={"headers": {"Authorization": f"Bearer {HF_TOKEN}"}}
142
+ )
143
 
144
  @cl.author_rename
145
  def rename(original_author: str):
 
164
  """
165
 
166
  ### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT
167
+ lcel_rag_chain = {"context": itemgetter("context") | hf_retriever, "query": RunnablePassthrough()} | rag_prompt | hf_llm
168
 
169
  cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
170