Spaces:
Sleeping
Sleeping
File size: 9,790 Bytes
2e37cc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import argparse
import itertools
import json
import os
import random
import time
from functools import partial
import re
from evaluate_tokenizer import EvaluationTokenizer
import editdistance as ed
import torch
from transformers.pipelines.audio_utils import ffmpeg_read
import requests
from whisper_normalizer.english import EnglishTextNormalizer
from whisper_normalizer.basic import BasicTextNormalizer
from cn_tn import TextNorm
import zhconv
english_normalizer = EnglishTextNormalizer()
chinese_normalizer = TextNorm(
to_banjiao = False,
to_upper = False,
to_lower = False,
remove_fillers = False,
remove_erhua =False,
check_chars = False,
remove_space = False,
cc_mode = '',
)
basic_normalizer = BasicTextNormalizer()
from tqdm import tqdm
from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration
PUNCS = '!,.?;:'
ds_collections = {
'librispeech': {'path': 'asr/librispeech_eval.jsonl','language': 'en'},
'aishell2': {'path': 'asr/aishell2_eval.jsonl', 'language': 'zh'},
'cv15_en': {'path': 'asr/cv15_asr_en_eval.jsonl', 'language': 'en'},
'cv15_zh': {'path': 'asr/cv15_asr_zh_eval.jsonl', 'language': 'zh'},
'cv15_yue': {'path': 'asr/cv15_asr_yue_eval.jsonl', 'language': 'yue'},
'cv15_fr': {'path': 'asr/cv15_asr_fr_eval.jsonl', 'language': 'fr'},
'fluers_zh': {'path': 'asr/fleurs_asr_zh_eval.jsonl', 'language': 'zh'},
}
class AudioDataset(torch.utils.data.Dataset):
def __init__(self, ds):
path = ds['path']
self.datas = open(path).readlines()
def __len__(self):
return len(self.datas)
def __getitem__(self, idx):
data = json.loads(self.datas[idx].strip())
audio = data['audio']
source = data['source']
prompt = "<|audio_bos|><|AUDIO|><|audio_eos|>"+data['prompt']
gt = data['gt']
return {
'audio': audio,
'prompt': prompt,
'source': source,
'gt': gt
}
def read_audio(audio_path):
if audio_path.startswith("http://") or audio_path.startswith("https://"):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
inputs = requests.get(audio_path).content
else:
with open(audio_path, "rb") as f:
inputs = f.read()
return inputs
def collate_fn(inputs, processor):
input_texts = [_['prompt'] for _ in inputs]
source = [_['source'] for _ in inputs]
gt = [_['gt'] for _ in inputs]
audio_path = [_['audio'] for _ in inputs]
input_audios = [ffmpeg_read(read_audio(_['audio']),sampling_rate=processor.feature_extractor.sampling_rate) for _ in inputs]
inputs = processor(text=input_texts, audios=input_audios, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt", padding=True)
return inputs, audio_path, source, gt
class InferenceSampler(torch.utils.data.sampler.Sampler):
def __init__(self, size):
self._size = int(size)
assert size > 0
self._rank = torch.distributed.get_rank()
self._world_size = torch.distributed.get_world_size()
self._local_indices = self._get_local_indices(size, self._world_size,
self._rank)
@staticmethod
def _get_local_indices(total_size, world_size, rank):
shard_size = total_size // world_size
left = total_size % world_size
shard_sizes = [shard_size + int(r < left) for r in range(world_size)]
begin = sum(shard_sizes[:rank])
end = min(sum(shard_sizes[:rank + 1]), total_size)
return range(begin, end)
def __iter__(self):
yield from self._local_indices
def __len__(self):
return len(self._local_indices)
def remove_sp(text, language):
gt = re.sub(r"<\|.*?\|>", " ", text)
gt = re.sub(rf"\s+", r" ", gt) # 将文本中的连续空格替换为单个空格
gt = re.sub(f" ?([{PUNCS}])", r"\1", gt)
gt = gt.lstrip(" ")
if language == "zh":
gt = re.sub(rf"\s+", r"", gt)
return gt
def compute_wer(refs, hyps, language):
distance = 0
ref_length = 0
tokenizer = EvaluationTokenizer(
tokenizer_type="none",
lowercase=True,
punctuation_removal=True,
character_tokenization=False,
)
for i in range(len(refs)):
ref = refs[i]
pred = hyps[i]
if language in ["yue"]:
ref = zhconv.convert(ref, 'zh-cn')
pred = zhconv.convert(pred, 'zh-cn')
if language in ["en"]:
ref = english_normalizer(ref)
pred = english_normalizer(pred)
if language in ["zh"]:
ref = chinese_normalizer(ref)
pred = chinese_normalizer(pred)
else:
ref = basic_normalizer(ref)
pred = basic_normalizer(pred)
ref_items = tokenizer.tokenize(ref).split()
pred_items = tokenizer.tokenize(pred).split()
if language in ["zh", "yue"]:
ref_items = [x for x in "".join(ref_items)]
pred_items = [x for x in "".join(pred_items)]
if i==0:
print(f"ref: {ref}")
print(f"pred: {pred}")
print(f"ref_items:\n{ref_items}\n{len(ref_items)}\n{ref_items[0]}")
print(f"pred_items:\n{pred_items}\n{len(ref_items)}\n{ref_items[0]}")
distance += ed.eval(ref_items, pred_items)
ref_length += len(ref_items)
return distance/ref_length
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', type=str, default='Qwen/Qwen2-Audio')
parser.add_argument('--dataset', type=str, default='')
parser.add_argument('--batch-size', type=int, default=1)
parser.add_argument('--num-workers', type=int, default=1)
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
torch.distributed.init_process_group(
backend='nccl',
world_size=int(os.getenv('WORLD_SIZE', '1')),
rank=int(os.getenv('RANK', '0')),
)
torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0)))
model = Qwen2AudioForConditionalGeneration.from_pretrained(
args.checkpoint, device_map='cuda', torch_dtype='auto', trust_remote_code=True).eval()
processor = AutoProcessor.from_pretrained(args.checkpoint)
processor.tokenizer.padding_side = 'left'
random.seed(args.seed)
dataset = AudioDataset(
ds=ds_collections[args.dataset],
)
data_loader = torch.utils.data.DataLoader(
dataset=dataset,
sampler=InferenceSampler(len(dataset)),
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
collate_fn=partial(collate_fn, processor=processor),
)
gts = []
sources = []
rets = []
audio_paths = []
for _, (inputs, audio_path, source, gt) in tqdm(enumerate(data_loader)):
inputs['input_ids'] = inputs['input_ids'].to('cuda')
output_ids = model.generate(**inputs, max_new_tokens=256, min_new_tokens=1, do_sample=False)
output_ids = output_ids[:, inputs.input_ids.size(1):]
output = processor.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
gts.extend(gt)
rets.extend(output)
sources.extend(source)
audio_paths.extend(audio_path)
torch.distributed.barrier()
world_size = torch.distributed.get_world_size()
merged_gts = [None for _ in range(world_size)]
merged_sources = [None for _ in range(world_size)]
merged_responses = [None for _ in range(world_size)]
merged_audio_paths = [None for _ in range(world_size)]
torch.distributed.all_gather_object(merged_gts, gts)
torch.distributed.all_gather_object(merged_sources, sources)
torch.distributed.all_gather_object(merged_responses, rets)
torch.distributed.all_gather_object(merged_audio_paths, audio_paths)
merged_gts = [_ for _ in itertools.chain.from_iterable(merged_gts)]
merged_sources = [_ for _ in itertools.chain.from_iterable(merged_sources)]
merged_audio_paths = [_ for _ in itertools.chain.from_iterable(merged_audio_paths)]
merged_responses = [
_ for _ in itertools.chain.from_iterable(merged_responses)
]
if torch.distributed.get_rank() == 0:
print(f"Evaluating {args.dataset} ...")
results = []
for gt, response, source, audio_path in zip(merged_gts, merged_responses, merged_sources, merged_audio_paths):
results.append({
'gt': gt,
'response': response,
'source': source,
'audio_path': audio_path,
})
time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime())
results_file = f'{args.dataset}_{time_prefix}.json'
json.dump(results, open(results_file, 'w'))
results_dict = {}
for item in tqdm(results):
source = item["source"]
results_dict.setdefault(source, []).append(item)
lan = ds_collections[args.dataset]['language']
for source in results_dict:
refs, hyps = [], []
results_list = results_dict[source]
for result in results_list:
gt = result["gt"]
response = result["response"]
gt = remove_sp(gt, lan)
response = remove_sp(response, lan)
refs.append(gt)
hyps.append(response)
wer = compute_wer(refs, hyps, lan)
print(f"source: {source} cnt: {len(refs)} wer: {wer:.4f}")
torch.distributed.barrier()
|