Tech-Meld's picture
Update app.py
9ab273b verified
import gradio as gr
from transformers import AutoModel, AutoTokenizer, pipeline, AutoConfig, AutoModelForCausalLM
from huggingface_hub import create_repo, HfApi, list_models
from transformers.modeling_utils import PreTrainedModel
import matplotlib.pyplot as plt
from io import BytesIO
import base64
import torch
from torch.nn.utils import prune
import subprocess
import logging
import sys
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Ensure sentencepiece is installed
try:
import sentencepiece
except ImportError:
subprocess.check_call(['pip', 'install', 'sentencepiece'])
# Function to fetch open-weight LLM models
def fetch_open_weight_models():
try:
models = list_models()
return models
except Exception as e:
logging.error(f"Error fetching models: {e}")
return []
# Custom function to retrieve just names from models list
def get_model_names():
models = fetch_open_weight_models()
model_names = [model.modelId for model in models if model.modelId is not None]
return model_names
# Full merge-kit Pruning Function
def merge_kit_prune(model: PreTrainedModel, target_num_parameters: int, progress: gr.Progress) -> PreTrainedModel:
"""Prunes a model using a merge-kit approach.
Args:
model (PreTrainedModel): The model to be pruned.
target_num_parameters (int): The target number of parameters after pruning.
progress (gr.Progress): The progress object for visual feedback.
Returns:
PreTrainedModel: The pruned model.
"""
total_params = sum(p.numel() for p in model.parameters())
amount = 1 - (target_num_parameters / total_params)
try:
# Prune the model
for i, (name, module) in enumerate(tqdm(model.named_modules(), desc="Pruning", file=sys.stdout)):
if isinstance(module, (torch.nn.Linear, torch.nn.Conv2d)):
prune.random_unstructured(module, name="weight", amount=amount)
progress(percent_complete=50 * (i + 1) / len(list(model.named_modules()))) # Progress update
# Remove the pruned weights
for i, (name, module) in enumerate(model.named_modules()):
if isinstance(module, (torch.nn.Linear, torch.nn.Conv2d)):
prune.remove(module, name="weight")
progress(percent_complete=50 + 50 * (i + 1) / len(list(model.named_modules()))) # Progress update
return model
except Exception as e:
logging.error(f"Error during pruning: {e}")
raise e
# Function to prune a model
def prune_model(llm_model_name, target_size, hf_write_token, repo_name, base_model_name=None, progress=gr.Progress(track_tqdm=True)):
log_messages = []
try:
# Load the LLM model and tokenizer
llm_tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
llm_model = AutoModelForCausalLM.from_pretrained(
llm_model_name,
torch_dtype=torch.float16,
)
log_messages.append('Model and tokenizer loaded successfully.')
logging.info('Model and tokenizer loaded successfully.')
total_params = sum(p.numel() for p in llm_model.parameters())
target_num_parameters = int(total_params * (target_size / 100))
# Prune the model
pruned_model = merge_kit_prune(llm_model, target_num_parameters, progress)
log_messages.append('Model pruned successfully.')
logging.info('Model pruned successfully.')
# Save the pruned model
api = HfApi()
create_repo(repo_name, token=hf_write_token, private=False, exist_ok=True)
pruned_model.push_to_hub(repo_name, use_auth_token=hf_write_token)
llm_tokenizer.push_to_hub(repo_name, use_auth_token=hf_write_token)
log_messages.append(f"Pruned model saved to Hugging Face Hub in repository {repo_name}")
logging.info(f"Pruned model saved to Hugging Face Hub in repository {repo_name}")
# Create a visualization
fig, ax = plt.subplots(figsize=(10, 5))
ax.bar(['Original', 'Pruned'], [total_params, sum(p.numel() for p in pruned_model.parameters())])
ax.set_ylabel('Number of Parameters')
ax.set_title('Model Size Comparison')
buf = BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
image_base64 = base64.b64encode(buf.read()).decode('utf-8')
return f"Pruned model saved to Hugging Face Hub in repository {repo_name}", f"data:image/png;base64,{image_base64}", '\n'.join(log_messages)
except Exception as e:
error_message = f"Detailed error: {repr(e)}"
log_messages.append(error_message)
logging.error(error_message)
return error_message, None, '\n'.join(log_messages)
# Define function to generate text
def generate_text(text, repo_name, hf_write_token):
try:
tokenizer = AutoTokenizer.from_pretrained(repo_name, use_auth_token=hf_write_token)
model = AutoModelForCausalLM.from_pretrained(repo_name, use_auth_token=hf_write_token)
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
generated_text = generator(text, max_length=50, num_beams=5, num_return_sequences=1)[0]['generated_text']
return generated_text
except Exception as e:
logging.error(f"Error during text generation: {e}")
return f"Error: {repr(e)}"
# Function to create a Gradio interface
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("## Create a Smaller LLM")
# Fetch available model names
model_names = get_model_names()
# Input components
llm_model_name = gr.Dropdown(label="Choose a Large Language Model", choices=model_names, interactive=True)
base_model_name = gr.Dropdown(label="Base Model Name (if required)", choices=model_names, interactive=True, visible=False)
target_size = gr.Slider(label="Target Model Size (%)", minimum=1, maximum=100, step=1, value=50, interactive=True)
hf_write_token = gr.Textbox(label="Hugging Face Write Token", placeholder="Enter your HF write token", interactive=True, type="password")
repo_name = gr.Textbox(label="Repository Name", placeholder="Enter the name of the repository", interactive=True)
pruned_func_choice = gr.Radio(label="Pruning Function", choices=["merge-kit"], value="merge-kit", interactive=True)
pruning_status = gr.Textbox(label="Pruning Status", interactive=False)
prune_button = gr.Button("Prune Model")
visualization = gr.Image(label="Model Size Comparison", interactive=False)
progress_bar = gr.Progress()
# Define function for pruning model with progress
def prune_model_with_progress(llm_model_name, base_model_name, target_size, hf_write_token, repo_name, pruned_func_choice):
if pruned_func_choice == "merge-kit":
return prune_model(llm_model_name, target_size, hf_write_token, repo_name, base_model_name, progress_bar)
else:
return f"Pruning function '{pruned_func_choice}' not implemented.", None, None
prune_button.click(fn=prune_model_with_progress, inputs=[llm_model_name, base_model_name, target_size, hf_write_token, repo_name, pruned_func_choice], outputs=[pruning_status, visualization])
text_input = gr.Textbox(label="Input Text")
text_output = gr.Textbox(label="Generated Text")
generate_button = gr.Button("Generate Text")
generate_button.click(fn=generate_text, inputs=[text_input, repo_name, hf_write_token], outputs=text_output)
return demo
# Create and launch the Gradio interface
demo = create_interface()
demo.launch()