TeamHaltmannSusanaHWCEO's picture
Create app.py
a4a2f83
import numpy as np
from PIL import Image
from keras.models import Model
from keras.layers import Input, UpSampling2D, Conv2D, concatenate
# This is the vq-vae model from "Neural Discrete Representation Learning"
# https://arxiv.org/abs/1711.00937
# by Aäron van den Oord, Oriol Vinyals, Koray Kavukcuoglu (Google DeepMind)
# ported to keras by @Ophirblum
class Encoder:
def __init__(self, input_shape, latent_dim, num_embeddings, commitment_cost):
self.input_shape = input_shape
self.latent_dim = latent_dim
self.num_embeddings = num_embeddings
self.commitment_cost = commitment_cost
self.encoder = None
def build(self):
x = Input(shape=self.input_shape, name='encoder_input')
# Downsampling path
h = Conv2D(64, 4, strides=2, activation='relu', padding='same')(x)
h = Conv2D(128, 4, strides=2, activation='relu', padding='same')(h)
h = Conv2D(256, 4, strides=2, activation='relu', padding='same')(h)
# Latent space
z = Conv2D(self.latent_dim, 4, strides=1, activation='linear', padding='same')(h)
# Instantiate Encoder Model
self.encoder = Model(x, z)
def encode(self, x):
assert self.encoder != None, "build the encoder first"
return self.encoder.predict(x)