Tarive commited on
Commit
42fbc29
·
verified ·
1 Parent(s): e841469

Upload hrm_act_v1.py

Browse files
Files changed (1) hide show
  1. models/hrm/hrm_act_v1.py +283 -0
models/hrm/hrm_act_v1.py ADDED
@@ -0,0 +1,283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple, List, Dict, Optional
2
+ from dataclasses import dataclass
3
+ import math
4
+
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from torch import nn
8
+ from pydantic import BaseModel
9
+
10
+ from models.common import trunc_normal_init_
11
+ from models.layers import rms_norm, SwiGLU, Attention, RotaryEmbedding, CosSin, CastedEmbedding, CastedLinear
12
+ from models.sparse_embedding import CastedSparseEmbedding
13
+
14
+
15
+ @dataclass
16
+ class HierarchicalReasoningModel_ACTV1InnerCarry:
17
+ z_H: torch.Tensor
18
+ z_L: torch.Tensor
19
+
20
+
21
+ @dataclass
22
+ class HierarchicalReasoningModel_ACTV1Carry:
23
+ inner_carry: HierarchicalReasoningModel_ACTV1InnerCarry
24
+
25
+ steps: torch.Tensor
26
+ halted: torch.Tensor
27
+
28
+ current_data: Dict[str, torch.Tensor]
29
+
30
+
31
+ class HierarchicalReasoningModel_ACTV1Config(BaseModel):
32
+ batch_size: int
33
+ seq_len: int
34
+ puzzle_emb_ndim: int = 0
35
+ num_puzzle_identifiers: int
36
+ vocab_size: int
37
+
38
+ H_cycles: int
39
+ L_cycles: int
40
+
41
+ H_layers: int
42
+ L_layers: int
43
+
44
+ # Transformer config
45
+ hidden_size: int
46
+ expansion: float
47
+ num_heads: int
48
+ pos_encodings: str
49
+
50
+ rms_norm_eps: float = 1e-5
51
+ rope_theta: float = 10000.0
52
+
53
+ # Halting Q-learning config
54
+ halt_max_steps: int
55
+ halt_exploration_prob: float
56
+
57
+ forward_dtype: str = "bfloat16"
58
+
59
+
60
+ class HierarchicalReasoningModel_ACTV1Block(nn.Module):
61
+ def __init__(self, config: HierarchicalReasoningModel_ACTV1Config) -> None:
62
+ super().__init__()
63
+
64
+ self.self_attn = Attention(
65
+ hidden_size=config.hidden_size,
66
+ head_dim=config.hidden_size // config.num_heads,
67
+ num_heads=config.num_heads,
68
+ num_key_value_heads=config.num_heads,
69
+ causal=False
70
+ )
71
+ self.mlp = SwiGLU(
72
+ hidden_size=config.hidden_size,
73
+ expansion=config.expansion,
74
+ )
75
+ self.norm_eps = config.rms_norm_eps
76
+
77
+ def forward(self, cos_sin: CosSin, hidden_states: torch.Tensor) -> torch.Tensor:
78
+ # Post Norm
79
+ # Self Attention
80
+ hidden_states = rms_norm(hidden_states + self.self_attn(cos_sin=cos_sin, hidden_states=hidden_states), variance_epsilon=self.norm_eps)
81
+ # Fully Connected
82
+ hidden_states = rms_norm(hidden_states + self.mlp(hidden_states), variance_epsilon=self.norm_eps)
83
+ return hidden_states
84
+
85
+
86
+ class HierarchicalReasoningModel_ACTV1ReasoningModule(nn.Module):
87
+ def __init__(self, layers: List[HierarchicalReasoningModel_ACTV1Block]):
88
+ super().__init__()
89
+
90
+ self.layers = torch.nn.ModuleList(layers)
91
+
92
+ def forward(self, hidden_states: torch.Tensor, input_injection: torch.Tensor, **kwargs) -> torch.Tensor:
93
+ # Input injection (add)
94
+ hidden_states = hidden_states + input_injection
95
+ # Layers
96
+ for layer in self.layers:
97
+ hidden_states = layer(hidden_states=hidden_states, **kwargs)
98
+
99
+ return hidden_states
100
+
101
+
102
+ class HierarchicalReasoningModel_ACTV1_Inner(nn.Module):
103
+ def __init__(self, config: HierarchicalReasoningModel_ACTV1Config) -> None:
104
+ super().__init__()
105
+ self.config = config
106
+ self.forward_dtype = getattr(torch, self.config.forward_dtype)
107
+
108
+ # I/O
109
+ self.embed_scale = math.sqrt(self.config.hidden_size)
110
+ embed_init_std = 1.0 / self.embed_scale
111
+
112
+ self.embed_tokens = CastedEmbedding(self.config.vocab_size, self.config.hidden_size, init_std=embed_init_std, cast_to=self.forward_dtype)
113
+ self.lm_head = CastedLinear(self.config.hidden_size, self.config.vocab_size, bias=False)
114
+ self.q_head = CastedLinear(self.config.hidden_size, 2, bias=True)
115
+
116
+ self.puzzle_emb_len = -(self.config.puzzle_emb_ndim // -self.config.hidden_size) # ceil div
117
+ if self.config.puzzle_emb_ndim > 0:
118
+ # Zero init puzzle embeddings
119
+ self.puzzle_emb = CastedSparseEmbedding(self.config.num_puzzle_identifiers, self.config.puzzle_emb_ndim,
120
+ batch_size=self.config.batch_size, init_std=0, cast_to=self.forward_dtype)
121
+
122
+ # LM Blocks
123
+ if self.config.pos_encodings == "rope":
124
+ self.rotary_emb = RotaryEmbedding(dim=self.config.hidden_size // self.config.num_heads,
125
+ max_position_embeddings=self.config.seq_len + self.puzzle_emb_len,
126
+ base=self.config.rope_theta)
127
+ elif self.config.pos_encodings == "learned":
128
+ self.embed_pos = CastedEmbedding(self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, init_std=embed_init_std, cast_to=self.forward_dtype)
129
+ else:
130
+ raise NotImplementedError()
131
+
132
+ # Reasoning Layers
133
+ self.H_level = HierarchicalReasoningModel_ACTV1ReasoningModule(layers=[HierarchicalReasoningModel_ACTV1Block(self.config) for _i in range(self.config.H_layers)])
134
+ self.L_level = HierarchicalReasoningModel_ACTV1ReasoningModule(layers=[HierarchicalReasoningModel_ACTV1Block(self.config) for _i in range(self.config.L_layers)])
135
+
136
+ # Initial states
137
+ self.H_init = nn.Buffer(trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1), persistent=True)
138
+ self.L_init = nn.Buffer(trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1), persistent=True)
139
+
140
+ # Q head special init
141
+ # Init Q to (almost) zero for faster learning during bootstrapping
142
+ with torch.no_grad():
143
+ self.q_head.weight.zero_()
144
+ self.q_head.bias.fill_(-5) # type: ignore
145
+
146
+ def _input_embeddings(self, input: torch.Tensor, puzzle_identifiers: torch.Tensor):
147
+ # Token embedding
148
+ embedding = self.embed_tokens(input.to(torch.int32))
149
+
150
+ # Puzzle embeddings
151
+ if self.config.puzzle_emb_ndim > 0:
152
+ puzzle_embedding = self.puzzle_emb(puzzle_identifiers)
153
+
154
+ pad_count = self.puzzle_emb_len * self.config.hidden_size - puzzle_embedding.shape[-1]
155
+ if pad_count > 0:
156
+ puzzle_embedding = F.pad(puzzle_embedding, (0, pad_count))
157
+
158
+ embedding = torch.cat((puzzle_embedding.view(-1, self.puzzle_emb_len, self.config.hidden_size), embedding), dim=-2)
159
+
160
+ # Position embeddings
161
+ if self.config.pos_encodings == "learned":
162
+ # scale by 1/sqrt(2) to maintain forward variance
163
+ embedding = 0.707106781 * (embedding + self.embed_pos.embedding_weight.to(self.forward_dtype))
164
+
165
+ # Scale
166
+ return self.embed_scale * embedding
167
+
168
+ def empty_carry(self, batch_size: int):
169
+ return HierarchicalReasoningModel_ACTV1InnerCarry(
170
+ z_H=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
171
+ z_L=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
172
+ )
173
+
174
+ def reset_carry(self, reset_flag: torch.Tensor, carry: HierarchicalReasoningModel_ACTV1InnerCarry):
175
+ return HierarchicalReasoningModel_ACTV1InnerCarry(
176
+ z_H=torch.where(reset_flag.view(-1, 1, 1), self.H_init, carry.z_H),
177
+ z_L=torch.where(reset_flag.view(-1, 1, 1), self.L_init, carry.z_L),
178
+ )
179
+
180
+ def forward(self, carry: HierarchicalReasoningModel_ACTV1InnerCarry, batch: Dict[str, torch.Tensor]) -> Tuple[HierarchicalReasoningModel_ACTV1InnerCarry, torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
181
+ seq_info = dict(
182
+ cos_sin=self.rotary_emb() if hasattr(self, "rotary_emb") else None,
183
+ )
184
+
185
+ # Input encoding
186
+ input_embeddings = self._input_embeddings(batch["inputs"], batch["puzzle_identifiers"])
187
+
188
+ # Forward iterations
189
+ with torch.no_grad():
190
+ z_H, z_L = carry.z_H, carry.z_L
191
+
192
+ for _H_step in range(self.config.H_cycles):
193
+ for _L_step in range(self.config.L_cycles):
194
+ if not ((_H_step == self.config.H_cycles - 1) and (_L_step == self.config.L_cycles - 1)):
195
+ z_L = self.L_level(z_L, z_H + input_embeddings, **seq_info)
196
+
197
+ if not (_H_step == self.config.H_cycles - 1):
198
+ z_H = self.H_level(z_H, z_L, **seq_info)
199
+
200
+ assert not z_H.requires_grad and not z_L.requires_grad
201
+
202
+ # 1-step grad
203
+ z_L = self.L_level(z_L, z_H + input_embeddings, **seq_info)
204
+ z_H = self.H_level(z_H, z_L, **seq_info)
205
+
206
+ # LM Outputs
207
+ new_carry = HierarchicalReasoningModel_ACTV1InnerCarry(z_H=z_H.detach(), z_L=z_L.detach()) # New carry no grad
208
+ output = self.lm_head(z_H)[:, self.puzzle_emb_len:]
209
+
210
+ # Q head
211
+ q_logits = self.q_head(z_H[:, 0]).to(torch.float32)
212
+
213
+ return new_carry, output, (q_logits[..., 0], q_logits[..., 1])
214
+
215
+
216
+ class HierarchicalReasoningModel_ACTV1(nn.Module):
217
+ """ACT wrapper."""
218
+
219
+ def __init__(self, config_dict: dict):
220
+ super().__init__()
221
+ self.config = HierarchicalReasoningModel_ACTV1Config(**config_dict)
222
+ self.inner = HierarchicalReasoningModel_ACTV1_Inner(self.config)
223
+
224
+ @property
225
+ def puzzle_emb(self):
226
+ return self.inner.puzzle_emb
227
+
228
+ def initial_carry(self, batch: Dict[str, torch.Tensor]):
229
+ batch_size = batch["inputs"].shape[0]
230
+
231
+ return HierarchicalReasoningModel_ACTV1Carry(
232
+ inner_carry=self.inner.empty_carry(batch_size), # Empty is expected, it will be reseted in first pass as all sequences are halted.
233
+
234
+ steps=torch.zeros((batch_size, ), dtype=torch.int32),
235
+ halted=torch.ones((batch_size, ), dtype=torch.bool), # Default to halted
236
+
237
+ current_data={k: torch.empty_like(v) for k, v in batch.items()}
238
+ )
239
+
240
+ def forward(self, carry: HierarchicalReasoningModel_ACTV1Carry, batch: Dict[str, torch.Tensor]) -> Tuple[HierarchicalReasoningModel_ACTV1Carry, Dict[str, torch.Tensor]]:
241
+ # Update data, carry (removing halted sequences)
242
+ new_inner_carry = self.inner.reset_carry(carry.halted, carry.inner_carry)
243
+
244
+ new_steps = torch.where(carry.halted, 0, carry.steps)
245
+
246
+ new_current_data = {k: torch.where(carry.halted.view((-1, ) + (1, ) * (batch[k].ndim - 1)), batch[k], v) for k, v in carry.current_data.items()}
247
+
248
+ # Forward inner model
249
+ new_inner_carry, logits, (q_halt_logits, q_continue_logits) = self.inner(new_inner_carry, new_current_data)
250
+
251
+ outputs = {
252
+ "logits": logits,
253
+ "q_halt_logits": q_halt_logits,
254
+ "q_continue_logits": q_continue_logits
255
+ }
256
+
257
+ with torch.no_grad():
258
+ # Step
259
+ new_steps = new_steps + 1
260
+ is_last_step = new_steps >= self.config.halt_max_steps
261
+
262
+ halted = is_last_step
263
+
264
+ # if training, and ACT is enabled
265
+ if self.training and (self.config.halt_max_steps > 1):
266
+ # Halt signal
267
+ # NOTE: During evaluation, always use max steps, this is to guarantee the same halting steps inside a batch for batching purposes
268
+ halted = halted | (q_halt_logits > q_continue_logits)
269
+
270
+ # Exploration
271
+ min_halt_steps = (torch.rand_like(q_halt_logits) < self.config.halt_exploration_prob) * torch.randint_like(new_steps, low=2, high=self.config.halt_max_steps + 1)
272
+
273
+ halted = halted & (new_steps >= min_halt_steps)
274
+
275
+ # Compute target Q
276
+ # NOTE: No replay buffer and target networks for computing target Q-value.
277
+ # As batch_size is large, there're many parallel envs.
278
+ # Similar concept as PQN https://arxiv.org/abs/2407.04811
279
+ next_q_halt_logits, next_q_continue_logits = self.inner(new_inner_carry, new_current_data)[-1]
280
+
281
+ outputs["target_q_continue"] = torch.sigmoid(torch.where(is_last_step, next_q_halt_logits, torch.maximum(next_q_halt_logits, next_q_continue_logits)))
282
+
283
+ return HierarchicalReasoningModel_ACTV1Carry(new_inner_carry, new_steps, halted, new_current_data), outputs