Spaces:
Running
Running
| from typing import Union | |
| import torch | |
| from torch import nn | |
| import torch.distributed as dist | |
| from torch.optim.optimizer import Optimizer, ParamsT | |
| from models.common import trunc_normal_init_ | |
| class CastedSparseEmbedding(nn.Module): | |
| def __init__(self, num_embeddings: int, embedding_dim: int, batch_size: int, init_std: float, cast_to: torch.dtype): | |
| super().__init__() | |
| self.cast_to = cast_to | |
| # Real Weights | |
| # Truncated LeCun normal init | |
| self.weights = nn.Buffer( | |
| trunc_normal_init_(torch.empty((num_embeddings, embedding_dim)), std=init_std), persistent=True | |
| ) | |
| # Local weights and IDs | |
| # Local embeddings, with gradient, not persistent | |
| self.local_weights = nn.Buffer(torch.zeros(batch_size, embedding_dim, requires_grad=True), persistent=False) | |
| # Local embedding IDs, not persistent | |
| self.local_ids = nn.Buffer(torch.zeros(batch_size, dtype=torch.int32), persistent=False) | |
| def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
| if not self.training: | |
| # Test mode, no gradient | |
| return self.weights[inputs].to(self.cast_to) | |
| # Training mode, fill puzzle embedding from weights | |
| with torch.no_grad(): | |
| self.local_weights.copy_(self.weights[inputs]) | |
| self.local_ids.copy_(inputs) | |
| return self.local_weights.to(self.cast_to) | |
| class CastedSparseEmbeddingSignSGD_Distributed(Optimizer): | |
| def __init__( | |
| self, | |
| params: ParamsT, | |
| world_size: int, | |
| lr: Union[float, torch.Tensor] = 1e-3, | |
| weight_decay: float = 1e-2, | |
| ): | |
| if not 0.0 <= lr: | |
| raise ValueError(f"Invalid learning rate: {lr}") | |
| if not 0.0 <= weight_decay: | |
| raise ValueError(f"Invalid weight_decay value: {weight_decay}") | |
| defaults = dict( | |
| lr=lr, | |
| weight_decay=weight_decay, | |
| world_size=world_size | |
| ) | |
| super().__init__(params, defaults) | |
| def step(self, closure=None): # type: ignore | |
| for group in self.param_groups: | |
| # Find the sparse embedding weights | |
| local_weights_grad = None | |
| local_ids = None | |
| weights = None | |
| assert len(group["params"]) == 3 | |
| for p in group["params"]: | |
| if p.requires_grad: | |
| local_weights_grad = p.grad | |
| elif p.ndim == 1: | |
| local_ids = p | |
| elif p.ndim == 2: | |
| weights = p | |
| else: | |
| assert False | |
| assert local_weights_grad is not None | |
| assert local_ids is not None | |
| assert weights is not None | |
| # Apply SignSGD | |
| # Adam ≈ SignSGD if gradient is very sparse | |
| _sparse_emb_signsgd_dist( | |
| local_weights_grad, | |
| local_ids, | |
| weights, | |
| lr=group["lr"], | |
| weight_decay=group["weight_decay"], | |
| world_size=group["world_size"] | |
| ) | |
| def _sparse_emb_signsgd_dist( | |
| local_weights_grad: torch.Tensor, | |
| local_ids: torch.Tensor, | |
| weights: torch.Tensor, | |
| lr: float, | |
| weight_decay: float, | |
| world_size: int | |
| ) -> None: | |
| N, D = local_weights_grad.shape | |
| # All-gather | |
| all_weights_grad = local_weights_grad | |
| all_ids = local_ids | |
| if world_size > 1: | |
| all_weights_grad = torch.empty((world_size * N, D), dtype=local_weights_grad.dtype, device=local_weights_grad.device) | |
| all_ids = torch.empty(world_size * N, dtype=local_ids.dtype, device=local_ids.device) | |
| dist.all_gather_into_tensor(all_weights_grad, local_weights_grad) | |
| dist.all_gather_into_tensor(all_ids, local_ids) | |
| # Unique | |
| grad_ids, inv = all_ids.unique(return_inverse=True) | |
| grad = torch.zeros((grad_ids.shape[0], D), dtype=all_weights_grad.dtype, device=all_weights_grad.device) | |
| grad.scatter_add_(0, inv.unsqueeze(-1).expand(-1, D), all_weights_grad) | |
| # SignSGD with decoupled weight decay | |
| p = weights[grad_ids] | |
| p.mul_(1.0 - lr * weight_decay).add_(torch.sign(grad), alpha=-lr) | |
| # Write updated slices back | |
| weights[grad_ids] = p | |