TRaw commited on
Commit
662fdbc
·
1 Parent(s): 63e24f1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -32
app.py CHANGED
@@ -1,37 +1,20 @@
1
- import requests
2
  import json
3
- import streamlit as st
4
-
5
- url = "https://run.cerebrium.ai/pygmalion-6b-webhook/predict"
6
 
7
- payload = json.dumps({"private": "ab48d14619365f6032d4"})
 
 
8
 
9
- headers = {
10
- 'Authorization': 'eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJwcm9qZWN0SWQiOiJwLTRjYmJhNTc0IiwiaWF0IjoxNjkzNzc2Mzg2LCJleHAiOjIwMDkzNTIzODZ9.Puo6VqpcL3iUPNirXGCb31jn42TQ1zho0eaQBHhNhmbv2d5DfqiO2B6U3VlcEnD7JpwUCkMgqfZCQjTkV0a5pTusx15DfXekQBCH_VtDlkm0BsjHvxSICN7RwRQD84xqoJEPe2EuTdfDkQm0Bz18ERSHD8jkUvYGTNDb1FyYXK_yG3qMZuLw8Cpl4l7ivyhLqyxXS_0AvUPHgAeDVISMsKVt4z2nTdcHTGiHNY2rt3INhjLCgnLYY0KGeyBcyhZrMXJyZ3cJfZsGwrsCq6KpEJO_uJAANVhABKKpVzOj163GG8bby19CaSpboezOGZIIvx3G6vRUCUSz4LTRLslNpg',
11
- 'Content-Type': 'application/json'
12
- }
 
13
 
14
- # Accept user input
15
- if prompt := st.chat_input("What is up?"):
16
- # Display user message in chat message container
17
- with st.chat_message("user"):
18
- st.markdown(prompt)
19
- # Add user message to chat history
20
- st.session_state.messages.append({"role": "user", "content": prompt})
21
-
22
- # Encode the new user input and add end of sentence token
23
- inputs = tokenizer.encode(prompt + tokenizer.eos_token, return_tensors="pt")
24
-
25
- # Generate a response
26
- outputs = model.generate(inputs, max_length=50, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
27
-
28
- # Decode the response
29
- response = requests.request("POST", url, headers=headers, data=payload)
30
-
31
- # Display the response in the chat
32
- with st.chat_message("bot"):
33
- st.markdown(response)
34
- # Add bot message to chat history
35
- st.session_state.messages.append({"role": "bot", "content": response})
36
 
37
- print(response.text)
 
1
+ import gradio as gr
2
  import json
3
+ import requests
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM
 
5
 
6
+ model_name = 'Pyg'
7
+ tokenizer = AutoTokenizer.from_pretrained("TheBloke/Pygmalion-7B-SuperHOT-8K-GPTQ")
8
+ model = AutoModelForCausalLM.from_pretrained("TheBloke/Pygmalion-7B-SuperHOT-8K-GPTQ")
9
 
10
+ def generate_text(input_text):
11
+ input_ids = tokenizer.encode(input_text, return_tensors='pt')
12
+ outputs = model.generate(input_ids, max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
13
+ text = tokenizer.decode(outputs[0], skip_special_tokens=True)
14
+ return text
15
 
16
+ iface = gr.Interface(fn=generate_text,
17
+ inputs=gr.inputs.Textbox(lines=5, placeholder='Enter text here...'),
18
+ outputs=gr.outputs.Textbox())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
+ iface.launch()