Spaces:
Sleeping
Sleeping
import math | |
import os | |
from mmcv import Config | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from risk_biased.scene_dataset.scene import RandomScene, RandomSceneParams | |
from risk_biased.scene_dataset.scene_plotter import ScenePlotter | |
from risk_biased.utils.cost import ( | |
DistanceCostNumpy, | |
DistanceCostParams, | |
TTCCostNumpy, | |
TTCCostParams, | |
) | |
from risk_biased.utils.risk import get_risk_level_sampler | |
if __name__ == "__main__": | |
working_dir = os.path.dirname(os.path.realpath(__file__)) | |
config_path = os.path.join( | |
working_dir, "..", "..", "risk_biased", "config", "learning_config.py" | |
) | |
config = Config.fromfile(config_path) | |
risk_sampler = get_risk_level_sampler(config.risk_distribution) | |
is_torch = False | |
n_samples = 1000 | |
sample_every = 10 | |
scene_params = RandomSceneParams.from_config(config) | |
scene_params.batch_size = n_samples | |
# Get a batch of random pedestrians | |
scene = RandomScene( | |
scene_params, | |
is_torch=is_torch, | |
) | |
# Define the initial positions of pedestrians | |
# Slow dangerous, fast safe settings: | |
percent_right = 0.8 | |
percent_top = 0.6 | |
angle = 5 * np.pi / 4 | |
# Slow safe, fast dangerous settings: | |
# percent_right = 0.8 | |
# percent_top = 1.1 | |
# angle = 5 * np.pi / 4 | |
positions = np.array([[[percent_right, percent_top]]] * n_samples) | |
angles = np.array([[angle]] * n_samples) | |
scene.set_pedestrians_states(positions, angles) | |
dist_cost_func = DistanceCostNumpy(DistanceCostParams.from_config(config)) | |
ttc_cost_func = TTCCostNumpy(TTCCostParams.from_config(config)) | |
len_traj = int(config.time_scene / scene.dt) | |
ped_trajs = scene.get_pedestrians_trajectories() | |
ego_traj = scene.get_ego_ref_trajectory(config.sample_times) | |
travel_distances = np.sqrt( | |
np.square(ped_trajs[..., -1, :] - ped_trajs[..., 0, :]).sum(-1) | |
) | |
dist_cost, dist = dist_cost_func( | |
ego_traj[:, :, config.num_steps :], ped_trajs[:, :, config.num_steps :] | |
) | |
ttc_cost, (ttc, dist) = ttc_cost_func( | |
ego_traj[:, :, config.num_steps :], | |
ped_trajs[:, :, config.num_steps :], | |
scene.get_ego_ref_velocity(), | |
scene.get_pedestrians_velocities(), | |
) | |
fig, ax = plt.subplots() | |
plotter = ScenePlotter(scene, ax) | |
plotter.draw_scene(0, time=config.num_steps * config.dt) | |
# plotter.draw_trajectory(ped_trajs[0, config.num_steps :], color="g") | |
plotter.draw_all_trajectories( | |
ped_trajs[:, :, config.num_steps :], color_value=ttc_cost | |
) | |
def plot_histograms(travel_distances, dist_cost, ttc_cost, label=""): | |
# Open the plots for the sampled future times | |
fig, ax = plt.subplots(1, 3) | |
fig.suptitle(label) | |
# Plot histograms of traveled distances, depending on the parameters. | |
# It should be multi-modal. There is a minimum distance and a maximum distance and travel distance variations within these bounds. | |
ax[0].set_title("Travel distance") | |
ax[1].set_title("Distance cost") | |
ax[2].set_title("TTC cost") | |
ax[0].hist(travel_distances[:, -1], bins=30) | |
ax[1].hist(dist_cost[:], bins=30) | |
ax[1].set_ylim([0, 3 * math.sqrt(n_samples)]) | |
ax[2].hist(ttc_cost[:], bins=30) | |
ax[2].set_ylim([0, 3 * math.sqrt(n_samples)]) | |
agent_selected = 0 | |
plot_histograms(travel_distances[:, agent_selected], dist_cost, ttc_cost, "Data") | |
print(f"Average ttc cost: {ttc_cost.mean()}") | |
print(f"Average distance cost: {dist_cost.mean()}") | |
plt.tight_layout() | |
plt.show() | |