File size: 15,270 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
"""evaluate_prediction_planning_stack.py --load_from <wandb ID> --seed <seed>
--num_episodes <num_episodes> --risk_level <a list of risk-levels>
--num_samples <a list of numbers of prediction samples>

This script loads a trained predictor from <wand ID>, runs a batch of open-loop MPC evaluations
(i.e., without replanning) using <num_episodes> episodes while varying risk-levels and numbers of
prediction samples. Results are stored in scripts/logs/planner_eval/run-<wandb ID>_<seed> as a
collection of pickle files.
"""


import argparse
import os
import pickle
from time import time_ns
from typing import List, Tuple
import sys

import torch
from mmcv import Config
from pytorch_lightning import seed_everything
from tqdm import trange


from risk_biased.mpc_planner.planner import MPCPlanner, MPCPlannerParams
from risk_biased.predictors.biased_predictor import LitTrajectoryPredictor
from risk_biased.scene_dataset.loaders import SceneDataLoaders
from risk_biased.scene_dataset.scene import RandomScene, RandomSceneParams
from risk_biased.utils.callbacks import get_fast_slow_scenes
from risk_biased.utils.load_model import load_from_config, config_argparse
from risk_biased.utils.planner_utils import (
    evaluate_control_sequence,
    get_interaction_cost,
    AbstractState,
    to_state,
)


def evaluate_main(
    load_from: str,
    seed: int,
    num_episodes: int,
    risk_level_list: List[float],
    num_prediction_samples_list: List[int],
):
    print(f"Risk-sensitivity level(s) to test: {risk_level_list}")
    print(f"Number(s) of prediction samples to test: {num_prediction_samples_list} ")
    save_dir = os.path.join(
        os.path.dirname(os.path.realpath(__file__)),
        "logs",
        "planner_eval",
        f"run-{load_from}_{seed}",
    )
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    cfg, planner = get_cfg_and_planner(load_from=load_from)
    if not planner.solver.params.mean_warm_start == False:
        print(
            "switching to mean_warm_start = False for open-loop evaluation (i.e. without re-planning)"
        )
        planner.solver.params.mean_warm_start = False

    for scene_type in [
        "safer_slow",
        "safer_fast",
    ]:
        print(f"\nTesting {scene_type} scenes")
        seed_everything(seed)
        (
            scene,
            ado_state_history_batch,
            ado_state_future_batch,
        ) = get_scene_and_ado_trajectory(
            cfg, scene_type=scene_type, num_episodes=num_episodes
        )

        (
            ego_state_history,
            ego_state_target_trajectory,
        ) = get_ego_state_history_and_target_trajectory(cfg, scene)

        for stack_risk_level in risk_level_list:
            print(f"  Risk_level: {stack_risk_level}")
            file_name = f"{scene_type}_no_policy_opt_risk_level_{stack_risk_level}"
            print(f"    {file_name}")
            stats_dict_no_policy_opt = evaluate_prediction_planning_stack(
                planner,
                ado_state_history_batch,
                ado_state_future_batch,
                ego_state_history,
                ego_state_target_trajectory,
                optimize_policy=False,
                stack_risk_level=stack_risk_level,
                risk_in_predictor=False,
            )
            with open(os.path.join(save_dir, file_name + ".pkl"), "wb") as f:
                pickle.dump(stats_dict_no_policy_opt, f)

            for num_prediction_samples in num_prediction_samples_list:
                file_name = f"{scene_type}_{num_prediction_samples}_samples_risk_level_{stack_risk_level}"
                if stack_risk_level == 0.0:
                    print(f"    {file_name}")
                    stats_dict_risk_neutral = evaluate_prediction_planning_stack(
                        planner,
                        ado_state_history_batch,
                        ado_state_future_batch,
                        ego_state_history,
                        ego_state_target_trajectory,
                        optimize_policy=True,
                        stack_risk_level=stack_risk_level,
                        risk_in_predictor=False,
                        num_prediction_samples=num_prediction_samples,
                    )
                    with open(os.path.join(save_dir, file_name + ".pkl"), "wb") as f:
                        pickle.dump(stats_dict_risk_neutral, f)
                else:
                    file_name_in_predictor = file_name + "_in_predictor"
                    print(f"    {file_name_in_predictor}")
                    stats_dict_risk_in_predictor = evaluate_prediction_planning_stack(
                        planner,
                        ado_state_history_batch,
                        ado_state_future_batch,
                        ego_state_history,
                        ego_state_target_trajectory,
                        optimize_policy=True,
                        stack_risk_level=stack_risk_level,
                        risk_in_predictor=True,
                        num_prediction_samples=num_prediction_samples,
                    )
                    with open(
                        os.path.join(save_dir, file_name_in_predictor + ".pkl"), "wb"
                    ) as f:
                        pickle.dump(stats_dict_risk_in_predictor, f)
                    file_name_in_planner = file_name + "_in_planner"
                    print(f"    {file_name_in_planner}")
                    stats_dict_risk_in_planner = evaluate_prediction_planning_stack(
                        planner,
                        ado_state_history_batch,
                        ado_state_future_batch,
                        ego_state_history,
                        ego_state_target_trajectory,
                        optimize_policy=True,
                        stack_risk_level=stack_risk_level,
                        risk_in_predictor=False,
                        num_prediction_samples=num_prediction_samples,
                    )
                    with open(
                        os.path.join(save_dir, file_name_in_planner + ".pkl"), "wb"
                    ) as f:
                        pickle.dump(stats_dict_risk_in_planner, f)


def evaluate_prediction_planning_stack(
    planner: MPCPlanner,
    ado_state_history_batch: AbstractState,
    ado_state_future_batch: AbstractState,
    ego_state_history: AbstractState,
    ego_state_target_trajectory: AbstractState,
    optimize_policy: bool = True,
    stack_risk_level: float = 0.0,
    risk_in_predictor: bool = False,
    num_prediction_samples: int = 128,
    num_prediction_samples_for_policy_eval: int = 4096,
) -> dict:
    assert planner.solver.params.mean_warm_start == False
    if risk_in_predictor:
        predictor_risk_level, planner_risk_level = stack_risk_level, 0.0
    else:
        predictor_risk_level, planner_risk_level = 0.0, stack_risk_level

    stats_dict = {
        "stack_risk_level": stack_risk_level,
        "predictor_risk_level": predictor_risk_level,
        "planner_risk_level": planner_risk_level,
    }

    num_episodes = ado_state_history_batch.shape[0]
    assert num_episodes == ado_state_future_batch.shape[0]

    for episode_id in trange(num_episodes, desc="episodes", leave=False):
        ado_state_history = ado_state_history_batch[episode_id]
        ado_state_future = ado_state_future_batch[episode_id]

        (
            ado_state_future_samples_for_policy_eval,
            sample_weights,
        ) = planner.solver.sample_prediction(
            planner.predictor,
            ado_state_history,
            planner.normalizer,
            ego_state_history=ego_state_history,
            ego_state_future=ego_state_target_trajectory,
            num_prediction_samples=num_prediction_samples_for_policy_eval,
            risk_level=0.0,
        )

        if optimize_policy:
            start = time_ns()
            solver_info = planner.solver.solve(
                planner.predictor,
                ego_state_history,
                ego_state_target_trajectory,
                ado_state_history,
                planner.normalizer,
                num_prediction_samples=num_prediction_samples,
                verbose=False,
                risk_level=stack_risk_level,
                resample_prediction=False,
                risk_in_predictor=risk_in_predictor,
            )
            end = time_ns()
            computation_time_ms = (end - start) * 1e-6
        else:
            planner.solver.reset()
            computation_time_ms = 0.0
            solver_info = None

        interaction_cost_gt = get_ground_truth_interaction_cost(
            planner, ado_state_future, ego_state_history
        )

        interaction_risk, tracking_cost = evaluate_control_sequence(
            planner.solver.control_sequence,
            planner.solver.dynamics_model,
            ego_state_history,
            ego_state_target_trajectory,
            ado_state_future_samples_for_policy_eval,
            sample_weights,
            planner.solver.interaction_cost,
            planner.solver.tracking_cost,
            risk_level=stack_risk_level,
            risk_estimator=planner.solver.risk_estimator,
        )

        stats_dict_this_run = {
            "computation_time_ms": computation_time_ms,
            "interaction_cost_ground_truth": interaction_cost_gt,
            "interaction_risk": interaction_risk,
            "tracking_cost": tracking_cost,
            "control_sequence": planner.solver.control_sequence,
            "solver_info": solver_info,
            "ado_unbiased_predictions": ado_state_future_samples_for_policy_eval.position.detach()
            .cpu()
            .numpy(),
            "sample_weights": sample_weights.detach().cpu().numpy(),
            "ado_position_future": ado_state_future.position.detach().cpu().numpy(),
            "ado_position_history": ado_state_history.position.detach().cpu().numpy(),
        }
        stats_dict[episode_id] = stats_dict_this_run

    return stats_dict


def get_cfg_and_predictor() -> Tuple[Config, LitTrajectoryPredictor]:
    config_path = os.path.join(
        os.path.dirname(os.path.realpath(__file__)),
        "..",
        "..",
        "risk_biased",
        "config",
        "learning_config.py",
    )
    cfg = config_argparse(config_path)
    predictor, _, cfg = load_from_config(cfg)
    return cfg, predictor


def get_cfg_and_planner(load_from: str) -> Tuple[Config, MPCPlanner]:
    planner_config_path = os.path.join(
        os.path.dirname(os.path.realpath(__file__)),
        "..",
        "..",
        "risk_biased",
        "config",
        "planning_config.py",
    )
    planner_cfg = Config.fromfile(planner_config_path)
    cfg, predictor = get_cfg_and_predictor()

    # joint_dict = {**dict(cfg), **dict(planner_cfg)}
    # assert joint_dict == {
    #     **dict(planner_cfg),
    #     **dict(cfg),
    # }, f"some of the entries conflict between {cfg.filename} and {planner_cfg.filename}"
    # joint_cfg = Config(joint_dict)
    cfg.update(planner_cfg)

    planner_params = MPCPlannerParams.from_config(cfg)
    normalizer = SceneDataLoaders.normalize_trajectory

    planner = MPCPlanner(planner_params, predictor, normalizer)
    return cfg, planner


def get_scene_and_ado_trajectory(
    cfg: Config, scene_type: str, num_episodes: int
) -> Tuple[RandomScene, torch.Tensor, torch.Tensor]:
    scene_params = RandomSceneParams.from_config(cfg)
    safer_fast_scene, safer_slow_scene = get_fast_slow_scenes(
        scene_params, num_episodes
    )

    assert scene_type in ["safer_fast", "safer_slow"]
    if scene_type == "safer_fast":
        scene = safer_fast_scene
    elif scene_type == "safer_slow":
        scene = safer_slow_scene
    else:
        raise ValueError(f"unknown scene type {scene_type}")

    ado_trajectory = torch.from_numpy(
        scene.get_pedestrians_trajectories().astype("float32")
    )
    ado_position_history = to_state(ado_trajectory[..., : cfg.num_steps, :], cfg.dt)
    ado_position_future = to_state(ado_trajectory[..., cfg.num_steps :, :], cfg.dt)
    return scene, ado_position_history, ado_position_future


def get_ego_state_history_and_target_trajectory(
    cfg: Config, scene: RandomScene
) -> Tuple[torch.Tensor, torch.Tensor]:
    ego_state_traj = to_state(
        torch.from_numpy(
            scene.get_ego_ref_trajectory(cfg.sample_times).astype("float32")
        ),
        cfg.dt,
    )
    ego_state_history = ego_state_traj[0, :, : cfg.num_steps]
    ego_state_target_trajectory = ego_state_traj[0, :, cfg.num_steps :]
    return ego_state_history, ego_state_target_trajectory


def get_ground_truth_interaction_cost(
    planner: MPCPlanner,
    ado_state_future: AbstractState,  # (num_agents, num_steps_future)
    ego_state_history: AbstractState,  # (1, 1, num_steps)
) -> float:
    ego_state_future = planner.solver.dynamics_model.simulate(
        ego_state_history[..., -1], planner.solver.control_sequence.unsqueeze(0)
    )
    interaction_cost = get_interaction_cost(
        ego_state_future,
        ado_state_future,
        planner.solver.interaction_cost,
    )
    return interaction_cost.item()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="evaluate prediciton-planning stack using safer_fast and safer_slow scenes"
    )
    parser.add_argument(
        "--load_from",
        type=str,
        required=True,
        help="WandB ID to load trained predictor from",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=0,
        help="Random seed for evaluation",
    )
    parser.add_argument(
        "--num_episodes",
        type=int,
        default=100,
        help="Number of episodes",
    )
    parser.add_argument(
        "--risk_level",
        type=float,
        nargs="+",
        help="Risk-sensitivity level(s) to test",
        default=[0.95, 1],
    )
    parser.add_argument(
        "--num_samples",
        type=int,
        nargs="+",
        help="Number(s) of prediction samples to test",
        default=[1, 4, 16, 64, 256, 1024],
    )
    parser.add_argument(
        "--force_config",
        action="store_true",
        help="""Use this flag to force the use of the local config file
        when loading a model from a checkpoint. Otherwise the checkpoint config file is used.
        In any case the parameters can be overwritten with an argparse argument.""",
    )
    parser.add_argument(
        "--load_last",
        action="store_true",
        help="""Use this flag to force the use of the last checkpoint instead of the best one
        when loading a model.""",
    )

    args = parser.parse_args()
    # Args will be re-parsed, this keeps only the arguments that are compatible with the second parser.
    keep_list = ["--load_from", "--seed", "--load_last", "--force_config"]
    sys.argv = [ss for s in sys.argv for ss in s.split("=")]
    sys.argv = [
        sys.argv[i]
        for i in range(len(sys.argv))
        if sys.argv[i] in keep_list or sys.argv[i - 1] in keep_list or i == 0
    ]
    evaluate_main(
        args.load_from, args.seed, args.num_episodes, args.risk_level, args.num_samples
    )