import polars as pl import numpy as np def feature_engineering(df: pl.DataFrame) -> pl.DataFrame: # Extract the year from the game_date column df = df.with_columns( pl.col('game_date').str.slice(0, 4).alias('year') ) df = df.with_columns([ (-(pl.col('vy0')**2 - (2 * pl.col('ay') * (pl.col('y0') - 17/12)))**0.5).alias('vy_f'), ]) df = df.with_columns([ ((pl.col('vy_f') - pl.col('vy0')) / pl.col('ay')).alias('t'), ]) df = df.with_columns([ (pl.col('vz0') + (pl.col('az') * pl.col('t'))).alias('vz_f'), (pl.col('vx0') + (pl.col('ax') * pl.col('t'))).alias('vx_f') ]) df = df.with_columns([ (-np.arctan(pl.col('vz_f') / pl.col('vy_f')) * (180 / np.pi)).alias('vaa'), (-np.arctan(pl.col('vx_f') / pl.col('vy_f')) * (180 / np.pi)).alias('haa') ]) # Mirror horizontal break for left-handed pitchers df = df.with_columns( pl.when(pl.col('pitcher_hand') == 'L') .then(-pl.col('ax')) .otherwise(pl.col('ax')) .alias('ax') ) # Mirror horizontal break for left-handed pitchers df = df.with_columns( pl.when(pl.col('pitcher_hand') == 'L') .then(-pl.col('hb')) .otherwise(pl.col('hb')) .alias('hb') ) # Mirror horizontal release point for left-handed pitchers df = df.with_columns( pl.when(pl.col('pitcher_hand') == 'L') .then(pl.col('x0')) .otherwise(-pl.col('x0')) .alias('x0') ) # Define the pitch types to be considered pitch_types = ['SI', 'FF', 'FC'] # Filter the DataFrame to include only the specified pitch types df_filtered = df.filter(pl.col('pitch_type').is_in(pitch_types)) # Group by pitcher_id and year, then aggregate to calculate average speed and usage percentage df_agg = df_filtered.group_by(['pitcher_id', 'year', 'pitch_type']).agg([ pl.col('start_speed').mean().alias('avg_fastball_speed'), pl.col('az').mean().alias('avg_fastball_az'), pl.col('ax').mean().alias('avg_fastball_ax'), pl.len().alias('count') ]) # Sort the aggregated data by count and average fastball speed df_agg = df_agg.sort(['count', 'avg_fastball_speed'], descending=[True, True]) df_agg = df_agg.unique(subset=['pitcher_id', 'year'], keep='first') # Join the aggregated data with the main DataFrame df = df.join(df_agg, on=['pitcher_id', 'year']) # If no fastball, use the fastest pitch for avg_fastball_speed df = df.with_columns( pl.when(pl.col('avg_fastball_speed').is_null()) .then(pl.col('start_speed').max().over('pitcher_id')) .otherwise(pl.col('avg_fastball_speed')) .alias('avg_fastball_speed') ) # If no fastball, use the fastest pitch for avg_fastball_az df = df.with_columns( pl.when(pl.col('avg_fastball_az').is_null()) .then(pl.col('az').max().over('pitcher_id')) .otherwise(pl.col('avg_fastball_az')) .alias('avg_fastball_az') ) # If no fastball, use the fastest pitch for avg_fastball_ax df = df.with_columns( pl.when(pl.col('avg_fastball_ax').is_null()) .then(pl.col('ax').max().over('ax')) .otherwise(pl.col('avg_fastball_ax')) .alias('avg_fastball_ax') ) # Calculate pitch differentials df = df.with_columns( (pl.col('start_speed') - pl.col('avg_fastball_speed')).alias('speed_diff'), (pl.col('az') - pl.col('avg_fastball_az')).alias('az_diff'), (pl.col('ax') - pl.col('avg_fastball_ax')).abs().alias('ax_diff') ) # Cast the year column to integer type df = df.with_columns( pl.col('year').cast(pl.Int64) ) df = df.with_columns([ pl.lit('All').alias('all') ]) # Calculate mound_to_release as 60.5 - extension df = df.with_columns([ (60.5 - df["extension"]).alias("release_pos_y") ]) # Calculate delta time (Δt) delta_t = (df["release_pos_y"] - df["y0"]) / df["vy0"] # Corrected back-calculation of release_pos_x and release_pos_z df = df.with_columns([ (df["x0"] + df["vx0"] * delta_t + 0.5 * df["ax"] * delta_t ** 2).alias("release_pos_x"), (df["z0"] + df["vz0"] * delta_t + 0.5 * df["az"] * delta_t ** 2).alias("release_pos_z") ]) return df