import polars as pl import joblib model = joblib.load('stuff_model/lgbm_model_2020_2023.joblib') # Read the values from the text file with open('stuff_model/target_stats.txt', 'r') as file: lines = file.readlines() target_mean = float(lines[0].strip()) target_std = float(lines[1].strip()) # Define the features to be used for training features = ['start_speed', 'spin_rate', 'extension', 'az', 'ax', 'x0', 'z0', 'speed_diff', 'az_diff', 'ax_diff'] def stuff_apply(df:pl.DataFrame) -> pl.DataFrame: # Filter the dataframe to include only the rows for the year 2024 and drop rows with null values in the specified features and target column # df_test = df.drop_nulls(subset=features) df_test = df.clone() # Predict the target values for the 2024 data using the trained model df_test = df_test.with_columns( pl.Series(name="target", values=model.predict(df_test[features].to_numpy())) ) # Standardize the target column to create a z-score df_test = df_test.with_columns( ((pl.col('target') - target_mean) / target_std).alias('target_zscore') ) # Convert the z-score to tj_stuff_plus df_test = df_test.with_columns( (100 - (pl.col('target_zscore') * 10)).alias('tj_stuff_plus') ) df_pitch_types = pl.read_csv('stuff_model/tj_stuff_plus_pitch.csv') # Join the pitch type statistics with the main DataFrame based on pitch_type df_pitch_all = df_test.join(df_pitch_types, left_on='pitch_type', right_on='pitch_type') # Normalize pitch_grade values to a range between -0.5 and 0.5 based on the percentiles df_pitch_all = df_pitch_all.with_columns( ((pl.col('tj_stuff_plus') - pl.col('mean')) / pl.col('std')).alias('pitch_grade') ) # Scale the pitch_grade values to a range between 20 and 80 df_pitch_all = df_pitch_all.with_columns( (pl.col('pitch_grade') * 10 + 50).clip(20, 80) ) return df_pitch_all