Update app.py
Browse files
app.py
CHANGED
@@ -1,123 +1,153 @@
|
|
1 |
-
import polars as pl
|
2 |
-
import numpy as np
|
3 |
-
import joblib
|
4 |
-
from shiny import App, reactive, render, ui
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
import matplotlib.ticker as tkr
|
7 |
-
import seaborn as sns
|
8 |
-
import adjustText
|
9 |
-
sns.set_style('whitegrid')
|
10 |
-
|
11 |
-
|
12 |
-
import matplotlib
|
13 |
-
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#FFFFFF','#FFB000','#FE6100'])
|
14 |
-
|
15 |
-
xwoba_model = joblib.load('joblib_model/xwoba_model.joblib')
|
16 |
-
|
17 |
-
x = np.arange(-30,90.5,.5)
|
18 |
-
y = np.arange(0,120.5,0.1)
|
19 |
-
|
20 |
-
xx, yy = np.meshgrid(x, y)
|
21 |
-
|
22 |
-
df = pl.DataFrame({'launch_angle': xx.ravel(), 'launch_speed': yy.ravel()})
|
23 |
-
|
24 |
-
df = df.with_columns(
|
25 |
-
pl.Series('xwoba', xwoba_model.predict_proba(df) @ [0, 0.883, 1.244, 1.569, 2.004])
|
26 |
-
)
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
)
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
ax.
|
118 |
-
ax.
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
app = App(app_ui, server)
|
|
|
1 |
+
import polars as pl
|
2 |
+
import numpy as np
|
3 |
+
import joblib
|
4 |
+
from shiny import App, reactive, render, ui
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import matplotlib.ticker as tkr
|
7 |
+
import seaborn as sns
|
8 |
+
import adjustText
|
9 |
+
sns.set_style('whitegrid')
|
10 |
+
|
11 |
+
|
12 |
+
import matplotlib
|
13 |
+
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#FFFFFF','#FFB000','#FE6100'])
|
14 |
+
|
15 |
+
xwoba_model = joblib.load('joblib_model/xwoba_model.joblib')
|
16 |
+
|
17 |
+
x = np.arange(-30,90.5,.5)
|
18 |
+
y = np.arange(0,120.5,0.1)
|
19 |
+
|
20 |
+
xx, yy = np.meshgrid(x, y)
|
21 |
+
|
22 |
+
df = pl.DataFrame({'launch_angle': xx.ravel(), 'launch_speed': yy.ravel()})
|
23 |
+
|
24 |
+
df = df.with_columns(
|
25 |
+
pl.Series('xwoba', xwoba_model.predict_proba(df) @ [0, 0.883, 1.244, 1.569, 2.004])
|
26 |
+
)
|
27 |
+
|
28 |
+
df = df.with_columns(
|
29 |
+
pl.Series('xslg', xwoba_model.predict_proba(df) @ [0, 1, 2, 3, 4])
|
30 |
+
)
|
31 |
+
|
32 |
+
app_ui = ui.page_sidebar(
|
33 |
+
ui.sidebar(
|
34 |
+
ui.markdown("""
|
35 |
+
### How to use this app
|
36 |
+
|
37 |
+
1. Click anywhere on the plot to select a point, or manually enter coordinates
|
38 |
+
2. The selected point's coordinates will update automatically
|
39 |
+
3. The xwOBA value will be calculated based on these coordinates
|
40 |
+
"""),
|
41 |
+
ui.hr(),
|
42 |
+
ui.input_numeric("x_select", "Launch Speed (mph)", value=110),
|
43 |
+
ui.input_numeric("y_select", "Launch Angle (°)", value=30),
|
44 |
+
ui.input_switch("flip_stat", "xwOBA", value=False),
|
45 |
+
|
46 |
+
|
47 |
+
),
|
48 |
+
ui.output_plot("plot",width='900px',height='900px', click=True)
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
def server(input, output, session):
|
53 |
+
# Store the coordinates in reactive values
|
54 |
+
x_coord = reactive.value(110)
|
55 |
+
y_coord = reactive.value(30)
|
56 |
+
|
57 |
+
@reactive.effect
|
58 |
+
@reactive.event(input.plot_click)
|
59 |
+
def _():
|
60 |
+
# Update reactive values when plot is clicked
|
61 |
+
click_data = input.plot_click()
|
62 |
+
if click_data is not None:
|
63 |
+
x_coord.set(click_data["x"])
|
64 |
+
y_coord.set(click_data["y"])
|
65 |
+
# Update the numeric inputs
|
66 |
+
ui.update_numeric("x_select", value=round(click_data["x"],1))
|
67 |
+
ui.update_numeric("y_select", value=round(click_data["y"],1))
|
68 |
+
|
69 |
+
@reactive.effect
|
70 |
+
@reactive.event(input.x_select, input.y_select)
|
71 |
+
def _():
|
72 |
+
# Update reactive values when numeric inputs change
|
73 |
+
x_coord.set(round(input.x_select(),1))
|
74 |
+
y_coord.set(round(input.y_select(),1))
|
75 |
+
|
76 |
+
|
77 |
+
@render.plot
|
78 |
+
def plot():
|
79 |
+
switch = input.flip_stat()
|
80 |
+
fig, ax = plt.subplots(1, 1, figsize=(9, 9))
|
81 |
+
|
82 |
+
|
83 |
+
if switch:
|
84 |
+
h = ax.hexbin(df['launch_speed'],
|
85 |
+
df['launch_angle'],
|
86 |
+
C=df['xwoba'],
|
87 |
+
gridsize=(40,25),
|
88 |
+
cmap=cmap_sum,
|
89 |
+
vmin=0.0,
|
90 |
+
vmax=2.0,)
|
91 |
+
bounds=[0.0,0.4,0.8,1.2,1.6,2.0]
|
92 |
+
fig.colorbar(h, ax=ax, label='xwOBA',format=tkr.FormatStrFormatter('%.3f'),shrink=0.5,
|
93 |
+
ticks=bounds)
|
94 |
+
|
95 |
+
if else:
|
96 |
+
h = ax.hexbin(df['launch_speed'],
|
97 |
+
df['launch_angle'],
|
98 |
+
C=df['xslg'],
|
99 |
+
gridsize=(40,25),
|
100 |
+
cmap=cmap_sum,
|
101 |
+
vmin=0.0,
|
102 |
+
vmax=2.0,)
|
103 |
+
bounds=[0.0,0.5,1,1.5,2,2.5,3,3.5,4]
|
104 |
+
fig.colorbar(h, ax=ax, label='xSLG',format=tkr.FormatStrFormatter('%.3f'),shrink=0.5,
|
105 |
+
ticks=bounds)
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
ax.set_xlabel('Launch Speed')
|
110 |
+
ax.set_ylabel('Launch Angle')
|
111 |
+
if switch:
|
112 |
+
ax.set_title('Exit Velocity vs Launch Angle\nExpected Weighted On Base Average (xwOBA)\nBy: @TJStats, Data:MLB')
|
113 |
+
else:
|
114 |
+
ax.set_title('Exit Velocity vs Launch Angle\nExpected Total Bases (xSLG)\nBy: @TJStats, Data:MLB')
|
115 |
+
|
116 |
+
ax.grid(False)
|
117 |
+
ax.axis('square')
|
118 |
+
ax.set_xlim(0, 120)
|
119 |
+
ax.set_ylim(-30, 90)
|
120 |
+
|
121 |
+
x_select = input.x_select()
|
122 |
+
y_select = input.y_select()
|
123 |
+
|
124 |
+
|
125 |
+
sns.scatterplot(x=[x_select],y=[y_select],color='#648FFF',s=50,ax=ax,edgecolor='k',zorder=100)
|
126 |
+
|
127 |
+
|
128 |
+
if switch:
|
129 |
+
xwoba_value = (xwoba_model.predict_proba([[y_select,x_select]]) @ [0, 0.883, 1.244, 1.569, 2.004])[0]
|
130 |
+
texts = [ax.text(x_select+3, y_select+3, f'xwOBA: {xwoba_value:.3f}', color='black', fontsize=12, weight='bold',
|
131 |
+
zorder=1000, bbox=dict(facecolor='white', alpha=0.5, edgecolor='black'))]
|
132 |
+
|
133 |
+
else switch:
|
134 |
+
xwoba_value = (xwoba_model.predict_proba([[y_select,x_select]]) @ [0, 1, 2, 3, 4])[0]
|
135 |
+
texts = [ax.text(x_select+3, y_select+3, f'xSLG: {xwoba_value:.3f}', color='black', fontsize=12, weight='bold',
|
136 |
+
zorder=1000, bbox=dict(facecolor='white', alpha=0.5, edgecolor='black'))]
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
adjustText.adjust_text(texts,
|
142 |
+
|
143 |
+
arrowprops=dict(arrowstyle='->', color='#DC267F'),avoid_self=True,
|
144 |
+
min_arrow_len =5)
|
145 |
+
# xwoba_value =
|
146 |
+
|
147 |
+
ax.axhline(y=y_select, color='k', linestyle='--',linewidth=1,alpha=0.5)
|
148 |
+
ax.axvline(x=x_select, color='k', linestyle='--',linewidth=1,alpha=0.5)
|
149 |
+
|
150 |
+
# ax.axis('square')
|
151 |
+
|
152 |
+
|
153 |
app = App(app_ui, server)
|