Update app.py
Browse files
app.py
CHANGED
@@ -62,6 +62,9 @@ app_ui = ui.page_fluid(
|
|
62 |
ui.nav("All Pitches",
|
63 |
output_tabulator("table_all")
|
64 |
),
|
|
|
|
|
|
|
65 |
)
|
66 |
)
|
67 |
)
|
@@ -202,7 +205,7 @@ def server(input, output, session):
|
|
202 |
{ "title": "Team", "field": "pitcher_team", "width": 100, "headerFilter":"input" ,"frozen":True,},
|
203 |
{ "title": "Pitch Type", "field": "pitch_type", "width": 125, "headerFilter":"input" ,"frozen":True,},
|
204 |
{ "title": "New Pitch?", "field": "new_pitch", "width": 125, "headerFilter":"input" ,"frozen":False,},
|
205 |
-
{ "title": "Pitches", "field": "count", "width": 100 , "headerFilter":"input"},
|
206 |
{ "title": "Pitch%", "field": "pitch_percent_formatted", "width": 100, "headerFilter":"input"},
|
207 |
{ "title": "RHH%", "field": "rhh_percent_formatted", "width": 100, "headerFilter":"input"},
|
208 |
{ "title": "LHH%", "field": "lhh_percent_formatted", "width": 100, "headerFilter":"input"},
|
@@ -234,5 +237,171 @@ def server(input, output, session):
|
|
234 |
)
|
235 |
|
236 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
app = App(app_ui, server)
|
|
|
62 |
ui.nav("All Pitches",
|
63 |
output_tabulator("table_all")
|
64 |
),
|
65 |
+
ui.nav("Daily Pitches",
|
66 |
+
output_tabulator("table_daily")
|
67 |
+
),
|
68 |
)
|
69 |
)
|
70 |
)
|
|
|
205 |
{ "title": "Team", "field": "pitcher_team", "width": 100, "headerFilter":"input" ,"frozen":True,},
|
206 |
{ "title": "Pitch Type", "field": "pitch_type", "width": 125, "headerFilter":"input" ,"frozen":True,},
|
207 |
{ "title": "New Pitch?", "field": "new_pitch", "width": 125, "headerFilter":"input" ,"frozen":False,},
|
208 |
+
{ "title": "Pitches", "field": "count", "width": 100 , "headerFilter":"input","contextMenu":True},
|
209 |
{ "title": "Pitch%", "field": "pitch_percent_formatted", "width": 100, "headerFilter":"input"},
|
210 |
{ "title": "RHH%", "field": "rhh_percent_formatted", "width": 100, "headerFilter":"input"},
|
211 |
{ "title": "LHH%", "field": "lhh_percent_formatted", "width": 100, "headerFilter":"input"},
|
|
|
237 |
)
|
238 |
|
239 |
|
240 |
+
@output
|
241 |
+
@render_tabulator
|
242 |
+
@reactive.event(input.refresh)
|
243 |
+
def table_daily():
|
244 |
+
|
245 |
+
import polars as pl
|
246 |
+
df_spring = pl.read_parquet(f"hf://datasets/TJStatsApps/mlb_data/data/mlb_pitch_data_2025_spring.parquet")
|
247 |
+
|
248 |
+
|
249 |
+
date = datetime.datetime.now().date()
|
250 |
+
date_str = date.strftime('%Y-%m-%d')
|
251 |
+
# Initialize the scraper
|
252 |
+
|
253 |
+
|
254 |
+
game_list_input = (scraper.get_schedule(year_input=[int(date_str[0:4])], sport_id=[1], game_type=['S'])
|
255 |
+
.filter(pl.col('date') == date)['game_id'])
|
256 |
+
|
257 |
+
data = scraper.get_data(game_list_input)
|
258 |
+
df = scraper.get_data_df(data)
|
259 |
+
|
260 |
+
df_spring = pl.concat([df_spring, df]).sort('game_date', descending=True)
|
261 |
+
|
262 |
+
|
263 |
+
|
264 |
+
# df_year_old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb,df_aaa,df_a,df_afl])))
|
265 |
+
# df_year_2old = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_mlb_2023])))
|
266 |
+
df_spring_stuff = stuff_apply.stuff_apply(fe.feature_engineering(pl.concat([df_spring])))
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
import polars as pl
|
271 |
+
|
272 |
+
# Compute total pitches for each pitcher
|
273 |
+
df_pitcher_totals = df_spring_stuff.group_by(["pitcher_id",'game_id','game_date']).agg(
|
274 |
+
pl.col("start_speed").count().alias("pitcher_total")
|
275 |
+
)
|
276 |
+
|
277 |
+
df_spring_group = df_spring_stuff.group_by(['pitcher_id', 'pitcher_name', 'pitch_type','game_id','game_date']).agg([
|
278 |
+
pl.col('start_speed').count().alias('count'),
|
279 |
+
pl.col('start_speed').mean().alias('start_speed'),
|
280 |
+
pl.col('ivb').mean().alias('ivb'),
|
281 |
+
pl.col('hb').mean().alias('hb'),
|
282 |
+
pl.col('release_pos_z').mean().alias('release_pos_z'),
|
283 |
+
pl.col('release_pos_x').mean().alias('release_pos_x'),
|
284 |
+
pl.col('extension').mean().alias('extension'),
|
285 |
+
pl.col('tj_stuff_plus').mean().alias('tj_stuff_plus'),
|
286 |
+
(pl.col('start_speed').filter(pl.col('batter_hand')=='L').count()).alias('rhh_count'),
|
287 |
+
(pl.col('start_speed').filter(pl.col('batter_hand')=='R').count()).alias('lhh_count')
|
288 |
+
])
|
289 |
+
|
290 |
+
# Join total pitches per pitcher to the grouped DataFrame on pitcher_id
|
291 |
+
df_spring_group = df_spring_group.join(df_pitcher_totals, on=["pitcher_id",'game_id','game_date'], how="left")
|
292 |
+
|
293 |
+
# Now calculate the pitch percent for each pitcher/pitch_type combination
|
294 |
+
df_spring_group = df_spring_group.with_columns(
|
295 |
+
(pl.col("count") / pl.col("pitcher_total")).alias("pitch_percent")
|
296 |
+
)
|
297 |
+
|
298 |
+
# Optionally, if you want the percentage of left/right-handed batters within the group:
|
299 |
+
df_spring_group = df_spring_group.with_columns([
|
300 |
+
(pl.col("rhh_count") / pl.col("pitcher_total")).alias("rhh_percent"),
|
301 |
+
(pl.col("lhh_count") / pl.col("pitcher_total")).alias("lhh_percent")
|
302 |
+
])
|
303 |
+
|
304 |
+
df_merge = df_spring_group.join(df_year_old_group,on=['pitcher_id','pitcher_name','pitch_type'],how='left',suffix='_old')
|
305 |
+
|
306 |
+
|
307 |
+
df_merge = df_merge.with_columns(
|
308 |
+
pl.col('pitcher_id').is_in(df_year_old_group['pitcher_id']).alias('exists_in_old')
|
309 |
+
)
|
310 |
+
|
311 |
+
df_merge = df_merge.with_columns(
|
312 |
+
pl.when(pl.col('start_speed_old').is_null() & pl.col('exists_in_old'))
|
313 |
+
.then(pl.lit("TRUE"))
|
314 |
+
.otherwise(pl.lit(None))
|
315 |
+
.alias("new_pitch")
|
316 |
+
)
|
317 |
+
|
318 |
+
import polars as pl
|
319 |
+
|
320 |
+
# Define the columns to subtract
|
321 |
+
cols_to_subtract = [
|
322 |
+
("start_speed", "start_speed_old"),
|
323 |
+
("ivb", "ivb_old"),
|
324 |
+
("hb", "hb_old"),
|
325 |
+
("release_pos_z", "release_pos_z_old"),
|
326 |
+
("release_pos_x", "release_pos_x_old"),
|
327 |
+
("extension", "extension_old"),
|
328 |
+
("tj_stuff_plus", "tj_stuff_plus_old")
|
329 |
+
]
|
330 |
+
|
331 |
+
df_merge = df_merge.with_columns([
|
332 |
+
# Step 1: Create _diff columns with the default value (e.g., 80) if old is null
|
333 |
+
pl.when(pl.col(old).is_null())
|
334 |
+
.then(pl.lit(10000)) # If old is null, assign 80 as the default
|
335 |
+
.otherwise(pl.col(new) - pl.col(old)) # Otherwise subtract old from new
|
336 |
+
.alias(new + "_diff")
|
337 |
+
for new, old in cols_to_subtract
|
338 |
+
])
|
339 |
+
|
340 |
+
# Step 2: Format the columns with (value (+diff)) - exclude brackets if diff is 80
|
341 |
+
df_merge = df_merge.with_columns([
|
342 |
+
pl.when(pl.col(new + "_diff").eq(10000)) # If diff is 80, no need to include brackets
|
343 |
+
.then(pl.col(new).round(1).cast(pl.Utf8)+'\n\t') # Just return the new value as string
|
344 |
+
.otherwise(
|
345 |
+
pl.col(new).round(1).cast(pl.Utf8) +
|
346 |
+
"\n(" +
|
347 |
+
pl.col(new + "_diff").round(1)
|
348 |
+
.map_elements(lambda x: f"{x:+.1f}") +
|
349 |
+
")"
|
350 |
+
).alias(new + "_formatted")
|
351 |
+
for new, _ in cols_to_subtract
|
352 |
+
])
|
353 |
+
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
|
359 |
+
percent_cols = ['pitch_percent', 'rhh_percent', 'lhh_percent']
|
360 |
+
|
361 |
+
df_merge = df_merge.with_columns([
|
362 |
+
(pl.col(col) * 100) # Convert to percentage
|
363 |
+
.round(1) # Round to 1 decimal
|
364 |
+
.map_elements(lambda x: f"{x:.1f}%") # Format as string with '%'
|
365 |
+
.alias(col + "_formatted")
|
366 |
+
for col in percent_cols
|
367 |
+
]).sort(['pitcher_id','count'],descending=True)
|
368 |
+
|
369 |
+
|
370 |
+
columns = [
|
371 |
+
{ "title": "Pitcher Name", "field": "pitcher_name", "width": 250, "headerFilter":"input" ,"frozen":True,},
|
372 |
+
{ "title": "Team", "field": "pitcher_team", "width": 100, "headerFilter":"input" ,"frozen":True,},
|
373 |
+
{ "title": "Pitch Type", "field": "pitch_type", "width": 125, "headerFilter":"input" ,"frozen":True,},
|
374 |
+
{ "title": "New Pitch?", "field": "new_pitch", "width": 125, "headerFilter":"input" ,"frozen":False,},
|
375 |
+
{ "title": "Date", "field": "game_date", "width": 100, "headerFilter":"input" ,"frozen":True,},
|
376 |
+
{ "title": "Pitches", "field": "count", "width": 100 , "headerFilter":"input"},
|
377 |
+
{ "title": "Pitch%", "field": "pitch_percent_formatted", "width": 100, "headerFilter":"input"},
|
378 |
+
{ "title": "RHH%", "field": "rhh_percent_formatted", "width": 100, "headerFilter":"input"},
|
379 |
+
{ "title": "LHH%", "field": "lhh_percent_formatted", "width": 100, "headerFilter":"input"},
|
380 |
+
{ "title": "Velocity", "field": "start_speed_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
|
381 |
+
{ "title": "iVB", "field": "ivb_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
|
382 |
+
{ "title": "HB", "field": "hb_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
|
383 |
+
{ "title": "RelH", "field": "release_pos_z_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
|
384 |
+
{ "title": "RelS", "field": "release_pos_x_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" },
|
385 |
+
{ "title": "Extension", "field": "extension_formatted", "width": 125, "headerFilter":"input", "formatter":"textarea" },
|
386 |
+
{ "title": "tjStuff+", "field": "tj_stuff_plus_formatted", "width": 100, "headerFilter":"input", "formatter":"textarea" }
|
387 |
+
]
|
388 |
+
|
389 |
+
|
390 |
+
df_plot = df_merge.to_pandas()
|
391 |
+
|
392 |
+
team_dict = dict(zip(df_spring['pitcher_id'],df_spring['pitcher_team']))
|
393 |
+
df_plot['pitcher_team'] = df_plot['pitcher_id'].map(team_dict)
|
394 |
+
|
395 |
+
|
396 |
+
|
397 |
+
return Tabulator(
|
398 |
+
df_plot,
|
399 |
+
|
400 |
+
table_options=TableOptions(
|
401 |
+
height=750,
|
402 |
+
|
403 |
+
columns=columns,
|
404 |
+
)
|
405 |
+
)
|
406 |
|
407 |
app = App(app_ui, server)
|