nesticot's picture
Upload 2 files
f2b749c verified
raw
history blame
50.6 kB
import requests
import polars as pl
import numpy as np
from datetime import datetime
from tqdm import tqdm
from pytz import timezone
import re
from concurrent.futures import ThreadPoolExecutor, as_completed
class MLB_Scrape:
def __init__(self):
# Initialize your class here if needed
pass
def get_sport_id(self):
"""
Retrieves the list of sports from the MLB API and processes it into a Polars DataFrame.
Returns:
- df (pl.DataFrame): A DataFrame containing the sports information.
"""
# Make API call to retrieve sports information
response = requests.get(url='https://statsapi.mlb.com/api/v1/sports').json()
# Convert the JSON response into a Polars DataFrame
df = pl.DataFrame(response['sports'])
return df
def get_sport_id_check(self, sport_id: int = 1):
"""
Checks if the provided sport ID exists in the list of sports retrieved from the MLB API.
Parameters:
- sport_id (int): The sport ID to check. Default is 1.
Returns:
- bool: True if the sport ID exists, False otherwise. If False, prints the available sport IDs.
"""
# Retrieve the list of sports from the MLB API
sport_id_df = self.get_sport_id()
# Check if the provided sport ID exists in the DataFrame
if sport_id not in sport_id_df['id']:
print('Please Select a New Sport ID from the following')
print(sport_id_df)
return False
return True
def get_game_types(self):
"""
Retrieves the different types of MLB games from the MLB API and processes them into a Polars DataFrame.
Returns:
- df (pl.DataFrame): A DataFrame containing the game types information.
"""
# Make API call to retrieve game types information
response = requests.get(url='https://statsapi.mlb.com/api/v1/gameTypes').json()
# Convert the JSON response into a Polars DataFrame
df = pl.DataFrame(response)
return df
def get_schedule(self,
year_input: list = [2024],
sport_id: list = [1],
game_type: list = ['R']):
"""
Retrieves the schedule of baseball games based on the specified parameters.
Parameters:
- year_input (list): A list of years to filter the schedule. Default is [2024].
- sport_id (list): A list of sport IDs to filter the schedule. Default is [1].
- game_type (list): A list of game types to filter the schedule. Default is ['R'].
Returns:
- game_df (pandas.DataFrame): A DataFrame containing the game schedule information, including game ID, date, time, away team, home team, game state, venue ID, and venue name. If the schedule length is 0, it returns a message indicating that different parameters should be selected.
"""
# Type checks
if not isinstance(year_input, list) or not all(isinstance(year, int) for year in year_input):
raise ValueError("year_input must be a list of integers.")
if not isinstance(sport_id, list) or not all(isinstance(sid, int) for sid in sport_id):
raise ValueError("sport_id must be a list of integers.")
if not isinstance(game_type, list) or not all(isinstance(gt, str) for gt in game_type):
raise ValueError("game_type must be a list of strings.")
eastern = timezone('US/Eastern')
# Convert input lists to comma-separated strings
year_input_str = ','.join([str(x) for x in year_input])
sport_id_str = ','.join([str(x) for x in sport_id])
game_type_str = ','.join([str(x) for x in game_type])
# Make API call to retrieve game schedule
game_call = requests.get(url=f'https://statsapi.mlb.com/api/v1/schedule/?sportId={sport_id_str}&gameTypes={game_type_str}&season={year_input_str}&hydrate=lineup,players').json()
try:
# Extract relevant data from the API response
game_list = [item for sublist in [[y.get('gamePk') for y in x['games']] for x in game_call['dates']] for item in sublist]
time_list = [item for sublist in [[y.get('gameDate') for y in x['games']] for x in game_call['dates']] for item in sublist]
date_list = [item for sublist in [[y.get('officialDate') for y in x['games']] for x in game_call['dates']] for item in sublist]
away_team_list = [item for sublist in [[y['teams']['away']['team'].get('name') for y in x['games']] for x in game_call['dates']] for item in sublist]
home_team_list = [item for sublist in [[y['teams']['home']['team'].get('name') for y in x['games']] for x in game_call['dates']] for item in sublist]
state_list = [item for sublist in [[y['status'].get('codedGameState') for y in x['games']] for x in game_call['dates']] for item in sublist]
venue_id = [item for sublist in [[y['venue'].get('id', None) for y in x['games']] for x in game_call['dates']] for item in sublist]
venue_name = [item for sublist in [[y['venue'].get('name') for y in x['games']] for x in game_call['dates']] for item in sublist]
# Create a Polars DataFrame with the extracted data
game_df = pl.DataFrame(data={'game_id': game_list,
'time': time_list,
'date': date_list,
'away': away_team_list,
'home': home_team_list,
'state': state_list,
'venue_id': venue_id,
'venue_name': venue_name})
# Check if the DataFrame is empty
if len(game_df) == 0:
print('Schedule Length of 0, please select different parameters.')
return None
# Convert date and time columns to appropriate formats
game_df = game_df.with_columns(
game_df['date'].str.to_date(),
game_df['time'].str.to_datetime().dt.convert_time_zone(eastern.zone).dt.strftime("%I:%M %p"))
# Remove duplicate games and sort by date
game_df = game_df.unique(subset='game_id').sort('date')
# Check again if the DataFrame is empty after processing
if len(game_df) == 0:
print('Schedule Length of 0, please select different parameters.')
return None
except KeyError:
print('No Data for Selected Parameters')
return None
return game_df
def get_data(self, game_list_input: list):
"""
Retrieves live game data for a list of game IDs in parallel.
Parameters:
- game_list_input (list): A list of game IDs for which to retrieve live data.
Returns:
- data_total (list): A list of JSON responses containing live game data for each game ID.
"""
data_total = []
print('This May Take a While. Progress Bar shows Completion of Data Retrieval.')
def fetch_data(game_id):
r = requests.get(f'https://statsapi.mlb.com/api/v1.1/game/{game_id}/feed/live')
return r.json()
with ThreadPoolExecutor() as executor:
futures = {executor.submit(fetch_data, game_id): game_id for game_id in game_list_input}
for future in tqdm(as_completed(futures), total=len(futures), desc="Processing", unit="iteration"):
data_total.append(future.result())
return data_total
def get_data_df(self, data_list):
"""
Converts a list of game data JSON objects into a Polars DataFrame.
Parameters:
- data_list (list): A list of JSON objects containing game data.
Returns:
- data_df (pl.DataFrame): A DataFrame containing the structured game data.
"""
swing_list = ['X','F','S','D','E','T','W']
whiff_list = ['S','T','W']
print('Converting Data to Dataframe.')
game_id = []
game_date = []
batter_id = []
batter_name = []
batter_hand = []
batter_team = []
batter_team_id = []
pitcher_id = []
pitcher_name = []
pitcher_hand = []
pitcher_team = []
pitcher_team_id = []
play_description = []
play_code = []
in_play = []
is_strike = []
is_swing = []
is_whiff = []
is_out = []
is_ball = []
is_review = []
pitch_type = []
pitch_description = []
strikes = []
balls = []
outs = []
strikes_after = []
balls_after = []
outs_after = []
start_speed = []
end_speed = []
sz_top = []
sz_bot = []
x = []
y = []
ax = []
ay = []
az = []
pfxx = []
pfxz = []
px = []
pz = []
vx0 = []
vy0 = []
vz0 = []
x0 = []
y0 = []
z0 = []
zone = []
type_confidence = []
plate_time = []
extension = []
spin_rate = []
spin_direction = []
vb = []
ivb = []
hb = []
launch_speed = []
launch_angle = []
launch_distance = []
launch_location = []
trajectory = []
hardness = []
hit_x = []
hit_y = []
index_play = []
play_id = []
start_time = []
end_time = []
is_pitch = []
type_type = []
type_ab = []
ab_number = []
event = []
event_type = []
rbi = []
away_score = []
home_score = []
for data in data_list:
try:
for ab_id in range(len(data['liveData']['plays']['allPlays'])):
ab_list = data['liveData']['plays']['allPlays'][ab_id]
for n in range(len(ab_list['playEvents'])):
if ab_list['playEvents'][n]['isPitch'] == True or 'call' in ab_list['playEvents'][n]['details']:
ab_number.append(ab_list['atBatIndex'] if 'atBatIndex' in ab_list else None)
game_id.append(data['gamePk'])
game_date.append(data['gameData']['datetime']['officialDate'])
if 'matchup' in ab_list:
batter_id.append(ab_list['matchup']['batter']['id'] if 'batter' in ab_list['matchup'] else None)
if 'batter' in ab_list['matchup']:
batter_name.append(ab_list['matchup']['batter']['fullName'] if 'fullName' in ab_list['matchup']['batter'] else None)
else:
batter_name.append(None)
batter_hand.append(ab_list['matchup']['batSide']['code'] if 'batSide' in ab_list['matchup'] else None)
pitcher_id.append(ab_list['matchup']['pitcher']['id'] if 'pitcher' in ab_list['matchup'] else None)
if 'pitcher' in ab_list['matchup']:
pitcher_name.append(ab_list['matchup']['pitcher']['fullName'] if 'fullName' in ab_list['matchup']['pitcher'] else None)
else:
pitcher_name.append(None)
pitcher_hand.append(ab_list['matchup']['pitchHand']['code'] if 'pitchHand' in ab_list['matchup'] else None)
if ab_list['about']['isTopInning']:
batter_team.append(data['gameData']['teams']['away']['abbreviation'] if 'away' in data['gameData']['teams'] else None)
batter_team_id.append(data['gameData']['teams']['away']['id'] if 'away' in data['gameData']['teams'] else None)
pitcher_team.append(data['gameData']['teams']['home']['abbreviation'] if 'home' in data['gameData']['teams'] else None)
pitcher_team_id.append(data['gameData']['teams']['home']['id'] if 'home' in data['gameData']['teams'] else None)
else:
batter_team.append(data['gameData']['teams']['home']['abbreviation'] if 'home' in data['gameData']['teams'] else None)
batter_team_id.append(data['gameData']['teams']['home']['id'] if 'home' in data['gameData']['teams'] else None)
pitcher_team.append(data['gameData']['teams']['away']['abbreviation'] if 'away' in data['gameData']['teams'] else None)
pitcher_team_id.append(data['gameData']['teams']['away']['id'] if 'away' in data['gameData']['teams'] else None)
play_description.append(ab_list['playEvents'][n]['details']['description'] if 'description' in ab_list['playEvents'][n]['details'] else None)
play_code.append(ab_list['playEvents'][n]['details']['code'] if 'code' in ab_list['playEvents'][n]['details'] else None)
in_play.append(ab_list['playEvents'][n]['details']['isInPlay'] if 'isInPlay' in ab_list['playEvents'][n]['details'] else None)
is_strike.append(ab_list['playEvents'][n]['details']['isStrike'] if 'isStrike' in ab_list['playEvents'][n]['details'] else None)
if 'details' in ab_list['playEvents'][n]:
is_swing.append(True if ab_list['playEvents'][n]['details']['code'] in swing_list else None)
is_whiff.append(True if ab_list['playEvents'][n]['details']['code'] in whiff_list else None)
else:
is_swing.append(None)
is_whiff.append(None)
is_ball.append(ab_list['playEvents'][n]['details']['isOut'] if 'isOut' in ab_list['playEvents'][n]['details'] else None)
is_review.append(ab_list['playEvents'][n]['details']['hasReview'] if 'hasReview' in ab_list['playEvents'][n]['details'] else None)
pitch_type.append(ab_list['playEvents'][n]['details']['type']['code'] if 'type' in ab_list['playEvents'][n]['details'] else None)
pitch_description.append(ab_list['playEvents'][n]['details']['type']['description'] if 'type' in ab_list['playEvents'][n]['details'] else None)
if ab_list['playEvents'][n]['pitchNumber'] == 1:
strikes.append(0)
balls.append(0)
strikes_after.append(ab_list['playEvents'][n]['count']['strikes'] if 'strikes' in ab_list['playEvents'][n]['count'] else None)
balls_after.append(ab_list['playEvents'][n]['count']['balls'] if 'balls' in ab_list['playEvents'][n]['count'] else None)
outs.append(ab_list['playEvents'][n]['count']['outs'] if 'outs' in ab_list['playEvents'][n]['count'] else None)
outs_after.append(ab_list['playEvents'][n]['count']['outs'] if 'outs' in ab_list['playEvents'][n]['count'] else None)
else:
strikes.append(ab_list['playEvents'][n-1]['count']['strikes'] if 'strikes' in ab_list['playEvents'][n-1]['count'] else None)
balls.append(ab_list['playEvents'][n-1]['count']['balls'] if 'balls' in ab_list['playEvents'][n-1]['count'] else None)
outs.append(ab_list['playEvents'][n-1]['count']['outs'] if 'outs' in ab_list['playEvents'][n-1]['count'] else None)
strikes_after.append(ab_list['playEvents'][n]['count']['strikes'] if 'strikes' in ab_list['playEvents'][n]['count'] else None)
balls_after.append(ab_list['playEvents'][n]['count']['balls'] if 'balls' in ab_list['playEvents'][n]['count'] else None)
outs_after.append(ab_list['playEvents'][n]['count']['outs'] if 'outs' in ab_list['playEvents'][n]['count'] else None)
if 'pitchData' in ab_list['playEvents'][n]:
start_speed.append(ab_list['playEvents'][n]['pitchData']['startSpeed'] if 'startSpeed' in ab_list['playEvents'][n]['pitchData'] else None)
end_speed.append(ab_list['playEvents'][n]['pitchData']['endSpeed'] if 'endSpeed' in ab_list['playEvents'][n]['pitchData'] else None)
sz_top.append(ab_list['playEvents'][n]['pitchData']['strikeZoneTop'] if 'strikeZoneTop' in ab_list['playEvents'][n]['pitchData'] else None)
sz_bot.append(ab_list['playEvents'][n]['pitchData']['strikeZoneBottom'] if 'strikeZoneBottom' in ab_list['playEvents'][n]['pitchData'] else None)
x.append(ab_list['playEvents'][n]['pitchData']['coordinates']['x'] if 'x' in ab_list['playEvents'][n]['pitchData']['coordinates'] else None)
y.append(ab_list['playEvents'][n]['pitchData']['coordinates']['y'] if 'y' in ab_list['playEvents'][n]['pitchData']['coordinates'] else None)
ax.append(ab_list['playEvents'][n]['pitchData']['coordinates']['aX'] if 'aX' in ab_list['playEvents'][n]['pitchData']['coordinates'] else None)
ay.append(ab_list['playEvents'][n]['pitchData']['coordinates']['aY'] if 'aY' in ab_list['playEvents'][n]['pitchData']['coordinates'] else None)
az.append(ab_list['playEvents'][n]['pitchData']['coordinates']['aZ'] if 'aZ' in ab_list['playEvents'][n]['pitchData']['coordinates'] else None)
pfxx.append(ab_list['playEvents'][n]['pitchData']['coordinates']['pfxX'] if 'pfxX' in ab_list['playEvents'][n]['pitchData']['coordinates'] else None)
pfxz.append(ab_list['playEvents'][n]['pitchData']['coordinates']['pfxZ'] if 'pfxZ' in ab_list['playEvents'][n]['pitchData']['coordinates'] else None)
px.append(ab_list['playEvents'][n]['pitchData']['coordinates']['pX'] if 'pX' in ab_list['playEvents'][n]['pitchData']['coordinates'] else None)
pz.append(ab_list['playEvents'][n]['pitchData']['coordinates']['pZ'] if 'pZ' in ab_list['playEvents'][n]['pitchData']['coordinates'] else None)
vx0.append(ab_list['playEvents'][n]['pitchData']['coordinates']['vX0'] if 'vX0' in ab_list['playEvents'][n]['pitchData']['coordinates'] else None)
vy0.append(ab_list['playEvents'][n]['pitchData']['coordinates']['vY0'] if 'vY0' in ab_list['playEvents'][n]['pitchData']['coordinates'] else None)
vz0.append(ab_list['playEvents'][n]['pitchData']['coordinates']['vZ0'] if 'vZ0' in ab_list['playEvents'][n]['pitchData']['coordinates'] else None)
x0.append(ab_list['playEvents'][n]['pitchData']['coordinates']['x0'] if 'x0' in ab_list['playEvents'][n]['pitchData']['coordinates'] else None)
y0.append(ab_list['playEvents'][n]['pitchData']['coordinates']['y0'] if 'y0' in ab_list['playEvents'][n]['pitchData']['coordinates'] else None)
z0.append(ab_list['playEvents'][n]['pitchData']['coordinates']['z0'] if 'z0' in ab_list['playEvents'][n]['pitchData']['coordinates'] else None)
zone.append(ab_list['playEvents'][n]['pitchData']['zone'] if 'zone' in ab_list['playEvents'][n]['pitchData'] else None)
type_confidence.append(ab_list['playEvents'][n]['pitchData']['typeConfidence'] if 'typeConfidence' in ab_list['playEvents'][n]['pitchData'] else None)
plate_time.append(ab_list['playEvents'][n]['pitchData']['plateTime'] if 'plateTime' in ab_list['playEvents'][n]['pitchData'] else None)
extension.append(ab_list['playEvents'][n]['pitchData']['extension'] if 'extension' in ab_list['playEvents'][n]['pitchData'] else None)
if 'breaks' in ab_list['playEvents'][n]['pitchData']:
spin_rate.append(ab_list['playEvents'][n]['pitchData']['breaks']['spinRate'] if 'spinRate' in ab_list['playEvents'][n]['pitchData']['breaks'] else None)
spin_direction.append(ab_list['playEvents'][n]['pitchData']['breaks']['spinDirection'] if 'spinDirection' in ab_list['playEvents'][n]['pitchData']['breaks'] else None)
vb.append(ab_list['playEvents'][n]['pitchData']['breaks']['breakVertical'] if 'breakVertical' in ab_list['playEvents'][n]['pitchData']['breaks'] else None)
ivb.append(ab_list['playEvents'][n]['pitchData']['breaks']['breakVerticalInduced'] if 'breakVerticalInduced' in ab_list['playEvents'][n]['pitchData']['breaks'] else None)
hb.append(ab_list['playEvents'][n]['pitchData']['breaks']['breakHorizontal'] if 'breakHorizontal' in ab_list['playEvents'][n]['pitchData']['breaks'] else None)
else:
start_speed.append(None)
end_speed.append(None)
sz_top.append(None)
sz_bot.append(None)
x.append(None)
y.append(None)
ax.append(None)
ay.append(None)
az.append(None)
pfxx.append(None)
pfxz.append(None)
px.append(None)
pz.append(None)
vx0.append(None)
vy0.append(None)
vz0.append(None)
x0.append(None)
y0.append(None)
z0.append(None)
zone.append(None)
type_confidence.append(None)
plate_time.append(None)
extension.append(None)
spin_rate.append(None)
spin_direction.append(None)
vb.append(None)
ivb.append(None)
hb.append(None)
if 'hitData' in ab_list['playEvents'][n]:
launch_speed.append(ab_list['playEvents'][n]['hitData']['launchSpeed'] if 'launchSpeed' in ab_list['playEvents'][n]['hitData'] else None)
launch_angle.append(ab_list['playEvents'][n]['hitData']['launchAngle'] if 'launchAngle' in ab_list['playEvents'][n]['hitData'] else None)
launch_distance.append(ab_list['playEvents'][n]['hitData']['totalDistance'] if 'totalDistance' in ab_list['playEvents'][n]['hitData'] else None)
launch_location.append(ab_list['playEvents'][n]['hitData']['location'] if 'location' in ab_list['playEvents'][n]['hitData'] else None)
trajectory.append(ab_list['playEvents'][n]['hitData']['trajectory'] if 'trajectory' in ab_list['playEvents'][n]['hitData'] else None)
hardness.append(ab_list['playEvents'][n]['hitData']['hardness'] if 'hardness' in ab_list['playEvents'][n]['hitData'] else None)
hit_x.append(ab_list['playEvents'][n]['hitData']['coordinates']['coordX'] if 'coordX' in ab_list['playEvents'][n]['hitData']['coordinates'] else None)
hit_y.append(ab_list['playEvents'][n]['hitData']['coordinates']['coordY'] if 'coordY' in ab_list['playEvents'][n]['hitData']['coordinates'] else None)
else:
launch_speed.append(None)
launch_angle.append(None)
launch_distance.append(None)
launch_location.append(None)
trajectory.append(None)
hardness.append(None)
hit_x.append(None)
hit_y.append(None)
index_play.append(ab_list['playEvents'][n]['index'] if 'index' in ab_list['playEvents'][n] else None)
play_id.append(ab_list['playEvents'][n]['playId'] if 'playId' in ab_list['playEvents'][n] else None)
start_time.append(ab_list['playEvents'][n]['startTime'] if 'startTime' in ab_list['playEvents'][n] else None)
end_time.append(ab_list['playEvents'][n]['endTime'] if 'endTime' in ab_list['playEvents'][n] else None)
is_pitch.append(ab_list['playEvents'][n]['isPitch'] if 'isPitch' in ab_list['playEvents'][n] else None)
type_type.append(ab_list['playEvents'][n]['type'] if 'type' in ab_list['playEvents'][n] else None)
if n == len(ab_list['playEvents']) - 1 :
type_ab.append(data['liveData']['plays']['allPlays'][ab_id]['result']['type'] if 'type' in data['liveData']['plays']['allPlays'][ab_id]['result'] else None)
event.append(data['liveData']['plays']['allPlays'][ab_id]['result']['event'] if 'event' in data['liveData']['plays']['allPlays'][ab_id]['result'] else None)
event_type.append(data['liveData']['plays']['allPlays'][ab_id]['result']['eventType'] if 'eventType' in data['liveData']['plays']['allPlays'][ab_id]['result'] else None)
rbi.append(data['liveData']['plays']['allPlays'][ab_id]['result']['rbi'] if 'rbi' in data['liveData']['plays']['allPlays'][ab_id]['result'] else None)
away_score.append(data['liveData']['plays']['allPlays'][ab_id]['result']['awayScore'] if 'awayScore' in data['liveData']['plays']['allPlays'][ab_id]['result'] else None)
home_score.append(data['liveData']['plays']['allPlays'][ab_id]['result']['homeScore'] if 'homeScore' in data['liveData']['plays']['allPlays'][ab_id]['result'] else None)
is_out.append(data['liveData']['plays']['allPlays'][ab_id]['result']['isOut'] if 'isOut' in data['liveData']['plays']['allPlays'][ab_id]['result'] else None)
else:
type_ab.append(None)
event.append(None)
event_type.append(None)
rbi.append(None)
away_score.append(None)
home_score.append(None)
is_out.append(None)
elif ab_list['playEvents'][n]['count']['balls'] == 4:
event.append(data['liveData']['plays']['allPlays'][ab_id]['result']['event'])
event_type.append(data['liveData']['plays']['allPlays'][ab_id]['result']['eventType'])
game_id.append(data['gamePk'])
game_date.append(data['gameData']['datetime']['officialDate'])
batter_id.append(ab_list['matchup']['batter']['id'] if 'batter' in ab_list['matchup'] else None)
batter_name.append(ab_list['matchup']['batter']['fullName'] if 'batter' in ab_list['matchup'] else None)
batter_hand.append(ab_list['matchup']['batSide']['code'] if 'batSide' in ab_list['matchup'] else None)
pitcher_id.append(ab_list['matchup']['pitcher']['id'] if 'pitcher' in ab_list['matchup'] else None)
pitcher_name.append(ab_list['matchup']['pitcher']['fullName'] if 'pitcher' in ab_list['matchup'] else None)
pitcher_hand.append(ab_list['matchup']['pitchHand']['code'] if 'pitchHand' in ab_list['matchup'] else None)
if ab_list['about']['isTopInning']:
batter_team.append(data['gameData']['teams']['away']['abbreviation'] if 'away' in data['gameData']['teams'] else None)
batter_team_id.append(data['gameData']['teams']['away']['id'] if 'away' in data['gameData']['teams'] else None)
pitcher_team.append(data['gameData']['teams']['home']['abbreviation'] if 'home' in data['gameData']['teams'] else None)
pitcher_team_id.append(data['gameData']['teams']['away']['id'] if 'away' in data['gameData']['teams'] else None)
else:
batter_team.append(data['gameData']['teams']['home']['abbreviation'] if 'home' in data['gameData']['teams'] else None)
batter_team_id.append(data['gameData']['teams']['home']['id'] if 'home' in data['gameData']['teams'] else None)
pitcher_team.append(data['gameData']['teams']['away']['abbreviation'] if 'away' in data['gameData']['teams'] else None)
pitcher_team_id.append(data['gameData']['teams']['home']['id'] if 'home' in data['gameData']['teams'] else None)
play_description.append(None)
play_code.append(None)
in_play.append(None)
is_strike.append(None)
is_ball.append(None)
is_review.append(None)
pitch_type.append(None)
pitch_description.append(None)
strikes.append(ab_list['playEvents'][n]['count']['balls'] if 'balls' in ab_list['playEvents'][n]['count'] else None)
balls.append(ab_list['playEvents'][n]['count']['strikes'] if 'strikes' in ab_list['playEvents'][n]['count'] else None)
outs.append(ab_list['playEvents'][n]['count']['outs'] if 'outs' in ab_list['playEvents'][n]['count'] else None)
strikes_after.append(ab_list['playEvents'][n]['count']['balls'] if 'balls' in ab_list['playEvents'][n]['count'] else None)
balls_after.append(ab_list['playEvents'][n]['count']['strikes'] if 'strikes' in ab_list['playEvents'][n]['count'] else None)
outs_after.append(ab_list['playEvents'][n]['count']['outs'] if 'outs' in ab_list['playEvents'][n]['count'] else None)
index_play.append(ab_list['playEvents'][n]['index'] if 'index' in ab_list['playEvents'][n] else None)
play_id.append(ab_list['playEvents'][n]['playId'] if 'playId' in ab_list['playEvents'][n] else None)
start_time.append(ab_list['playEvents'][n]['startTime'] if 'startTime' in ab_list['playEvents'][n] else None)
end_time.append(ab_list['playEvents'][n]['endTime'] if 'endTime' in ab_list['playEvents'][n] else None)
is_pitch.append(ab_list['playEvents'][n]['isPitch'] if 'isPitch' in ab_list['playEvents'][n] else None)
type_type.append(ab_list['playEvents'][n]['type'] if 'type' in ab_list['playEvents'][n] else None)
is_swing.append(None)
is_whiff.append(None)
start_speed.append(None)
end_speed.append(None)
sz_top.append(None)
sz_bot.append(None)
x.append(None)
y.append(None)
ax.append(None)
ay.append(None)
az.append(None)
pfxx.append(None)
pfxz.append(None)
px.append(None)
pz.append(None)
vx0.append(None)
vy0.append(None)
vz0.append(None)
x0.append(None)
y0.append(None)
z0.append(None)
zone.append(None)
type_confidence.append(None)
plate_time.append(None)
extension.append(None)
spin_rate.append(None)
spin_direction.append(None)
vb.append(None)
ivb.append(None)
hb.append(None)
launch_speed.append(None)
launch_angle.append(None)
launch_distance.append(None)
launch_location.append(None)
trajectory.append(None)
hardness.append(None)
hit_x.append(None)
hit_y.append(None)
type_ab.append(None)
ab_number.append(None)
rbi.append(None)
away_score.append(None)
home_score.append(None)
is_out.append(None)
except KeyError:
print(f"No Data for Game")
df = pl.DataFrame(data={
'game_id':game_id,
'game_date':game_date,
'batter_id':batter_id,
'batter_name':batter_name,
'batter_hand':batter_hand,
'batter_team':batter_team,
'batter_team_id':batter_team_id,
'pitcher_id':pitcher_id,
'pitcher_name':pitcher_name,
'pitcher_hand':pitcher_hand,
'pitcher_team':pitcher_team,
'pitcher_team_id':pitcher_team_id,
'ab_number':ab_number,
'play_description':play_description,
'play_code':play_code,
'in_play':in_play,
'is_strike':is_strike,
'is_swing':is_swing,
'is_whiff':is_whiff,
'is_out':is_out,
'is_ball':is_ball,
'is_review':is_review,
'pitch_type':pitch_type,
'pitch_description':pitch_description,
'strikes':strikes,
'balls':balls,
'outs':outs,
'strikes_after':strikes_after,
'balls_after':balls_after,
'outs_after':outs_after,
'start_speed':start_speed,
'end_speed':end_speed,
'sz_top':sz_top,
'sz_bot':sz_bot,
'x':x,
'y':y,
'ax':ax,
'ay':ay,
'az':az,
'pfxx':pfxx,
'pfxz':pfxz,
'px':px,
'pz':pz,
'vx0':vx0,
'vy0':vy0,
'vz0':vz0,
'x0':x0,
'y0':y0,
'z0':z0,
'zone':zone,
'type_confidence':type_confidence,
'plate_time':plate_time,
'extension':extension,
'spin_rate':spin_rate,
'spin_direction':spin_direction,
'vb':vb,
'ivb':ivb,
'hb':hb,
'launch_speed':launch_speed,
'launch_angle':launch_angle,
'launch_distance':launch_distance,
'launch_location':launch_location,
'trajectory':trajectory,
'hardness':hardness,
'hit_x':hit_x,
'hit_y':hit_y,
'index_play':index_play,
'play_id':play_id,
'start_time':start_time,
'end_time':end_time,
'is_pitch':is_pitch,
'type_type':type_type,
'type_ab':type_ab,
'event':event,
'event_type':event_type,
'rbi':rbi,
'away_score':away_score,
'home_score':home_score,
},strict=False
)
return df
def get_teams(self):
"""
Retrieves information about MLB teams from the MLB API and processes it into a Polars DataFrame.
Returns:
- mlb_teams_df (pl.DataFrame): A DataFrame containing team information, including team ID, city, name, franchise, abbreviation, parent organization ID, parent organization name, league ID, and league name.
"""
# Make API call to retrieve team information
teams = requests.get(url='https://statsapi.mlb.com/api/v1/teams/').json()
# Extract relevant data from the API response
mlb_teams_city = [x['franchiseName'] if 'franchiseName' in x else None for x in teams['teams']]
mlb_teams_name = [x['teamName'] if 'franchiseName' in x else None for x in teams['teams']]
mlb_teams_franchise = [x['name'] if 'franchiseName' in x else None for x in teams['teams']]
mlb_teams_id = [x['id'] if 'franchiseName' in x else None for x in teams['teams']]
mlb_teams_abb = [x['abbreviation'] if 'franchiseName' in x else None for x in teams['teams']]
mlb_teams_parent_id = [x['parentOrgId'] if 'parentOrgId' in x else None for x in teams['teams']]
mlb_teams_parent = [x['parentOrgName'] if 'parentOrgName' in x else None for x in teams['teams']]
mlb_teams_league_id = [x['league']['id'] if 'id' in x['league'] else None for x in teams['teams']]
mlb_teams_league_name = [x['league']['name'] if 'name' in x['league'] else None for x in teams['teams']]
# Create a Polars DataFrame with the extracted data
mlb_teams_df = pl.DataFrame(data={'team_id': mlb_teams_id,
'city': mlb_teams_franchise,
'name': mlb_teams_name,
'franchise': mlb_teams_franchise,
'abbreviation': mlb_teams_abb,
'parent_org_id': mlb_teams_parent_id,
'parent_org': mlb_teams_parent,
'league_id': mlb_teams_league_id,
'league_name': mlb_teams_league_name
}).unique().drop_nulls(subset=['team_id']).sort('team_id')
# Fill missing parent organization IDs with team IDs
mlb_teams_df = mlb_teams_df.with_columns(
pl.when(pl.col('parent_org_id').is_null())
.then(pl.col('team_id'))
.otherwise(pl.col('parent_org_id'))
.alias('parent_org_id')
)
# Fill missing parent organization names with franchise names
mlb_teams_df = mlb_teams_df.with_columns(
pl.when(pl.col('parent_org').is_null())
.then(pl.col('franchise'))
.otherwise(pl.col('parent_org'))
.alias('parent_org')
)
# Create a dictionary for mapping team IDs to abbreviations
abbreviation_dict = mlb_teams_df.select(['team_id', 'abbreviation']).to_dict(as_series=False)
abbreviation_map = {k: v for k, v in zip(abbreviation_dict['team_id'], abbreviation_dict['abbreviation'])}
# Create a DataFrame for parent organization abbreviations
abbreviation_df = mlb_teams_df.select(['team_id', 'abbreviation']).rename({'team_id': 'parent_org_id', 'abbreviation': 'parent_org_abbreviation'})
# Join the parent organization abbreviations with the main DataFrame
mlb_teams_df = mlb_teams_df.join(abbreviation_df, on='parent_org_id', how='left')
return mlb_teams_df
def get_leagues(self):
"""
Retrieves information about MLB leagues from the MLB API and processes it into a Polars DataFrame.
Returns:
- leagues_df (pl.DataFrame): A DataFrame containing league information, including league ID, league name, league abbreviation, and sport ID.
"""
# Make API call to retrieve league information
leagues = requests.get(url='https://statsapi.mlb.com/api/v1/leagues/').json()
# Extract relevant data from the API response
sport_id = [x['sport']['id'] if 'sport' in x else None for x in leagues['leagues']]
league_id = [x['id'] if 'id' in x else None for x in leagues['leagues']]
league_name = [x['name'] if 'name' in x else None for x in leagues['leagues']]
league_abbreviation = [x['abbreviation'] if 'abbreviation' in x else None for x in leagues['leagues']]
# Create a Polars DataFrame with the extracted data
leagues_df = pl.DataFrame(data={
'league_id': league_id,
'league_name': league_name,
'league_abbreviation': league_abbreviation,
'sport_id': sport_id,
})
return leagues_df
def get_player_games_list(self, player_id: int,
season: int,
start_date: str = None,
end_date: str = None,
sport_id: int = 1,
game_type: list = ['R'],
pitching: bool = True):
"""
Retrieves a list of game IDs for a specific player in a given season.
Parameters:
- player_id (int): The ID of the player.
- season (int): The season year for which to retrieve the game list.
- start_date (str): The start date (YYYY-MM-DD) of the range (default is January 1st of the specified season).
- end_date (str): The end date (YYYY-MM-DD) of the range (default is December 31st of the specified season).
- sport_id (int): The ID of the sport for which to retrieve player data.
- game_type (list): A list of game types to filter the schedule. Default is ['R'].
- pitching (bool): Return pitching games.
Returns:
- player_game_list (list): A list of game IDs in which the player participated during the specified season.
"""
# Set default start and end dates if not provided
if not start_date:
start_date = f'{season}-01-01'
if not end_date:
end_date = f'{season}-12-31'
# Determine the group based on the pitching flag
group = 'pitching' if pitching else 'hitting'
# Validate date format
date_pattern = re.compile(r'^\d{4}-\d{2}-\d{2}$')
if not date_pattern.match(start_date):
raise ValueError(f"start_date {start_date} is not in YYYY-MM-DD format")
if not date_pattern.match(end_date):
raise ValueError(f"end_date {end_date} is not in YYYY-MM-DD format")
# Convert game type list to a comma-separated string
game_type_str = ','.join([str(x) for x in game_type])
# Make API call to retrieve player game logs
response = requests.get(url=f'http://statsapi.mlb.com/api/v1/people/{player_id}?hydrate=stats(group={group},type=gameLog,season={season},startDate={start_date},endDate={end_date},sportId={sport_id},gameType=[{game_type_str}]),hydrations').json()
# Check if stats are available in the response
if 'stats' not in response['people'][0]:
print(f'No {group} games found for player {player_id} in season {season}')
return []
# Extract game IDs from the API response
player_game_list = [x['game']['gamePk'] for x in response['people'][0]['stats'][0]['splits']]
return player_game_list
def get_players(self, sport_id: int, season: int, game_type: list = ['R']):
"""
Retrieves data frame of players in a given league
Parameters:
- sport_id (int): The ID of the sport for which to retrieve player data.
- season (int): The season year for which to retrieve player data.
- game_type (list): A list of game types to filter the players. Default is ['R'].
Returns:
- player_df (pl.DataFrame): A DataFrame containing player information, including player ID, name, position, team, and age.
"""
game_type_str = ','.join([str(x) for x in game_type])
# If game type is 'S', fetch data from a different endpoint
if game_type_str == 'S':
# Fetch pitcher data
pitcher_data = requests.get(f'https://bdfed.stitch.mlbinfra.com/bdfed/stats/player?&env=prod&season={season}&sportId=1&stats=season&group=pitching&gameType=S&limit=1000000&offset=0&sortStat=inningsPitched&order=asc').json()
fullName_list = [x['playerFullName'] for x in pitcher_data['stats']]
firstName_list = [x['playerFirstName'] for x in pitcher_data['stats']]
lastName_list = [x['playerLastName'] for x in pitcher_data['stats']]
id_list = [x['playerId'] for x in pitcher_data['stats']]
position_list = [x['primaryPositionAbbrev'] for x in pitcher_data['stats']]
team_list = [x['teamId'] for x in pitcher_data['stats']]
df_pitcher = pl.DataFrame(data={
'player_id': id_list,
'first_name': firstName_list,
'last_name': lastName_list,
'name': fullName_list,
'position': position_list,
'team': team_list
})
# Fetch batter data
batter_data = requests.get(f'https://bdfed.stitch.mlbinfra.com/bdfed/stats/player?&env=prod&season={season}&sportId=1&stats=season&group=hitting&gameType=S&limit=1000000&offset=0').json()
fullName_list = [x['playerFullName'] for x in batter_data['stats']]
firstName_list = [x['playerFirstName'] for x in batter_data['stats']]
lastName_list = [x['playerLastName'] for x in batter_data['stats']]
id_list = [x['playerId'] for x in batter_data['stats']]
position_list = [x['primaryPositionAbbrev'] for x in batter_data['stats']]
team_list = [x['teamId'] for x in batter_data['stats']]
df_batter = pl.DataFrame(data={
'player_id': id_list,
'first_name': firstName_list,
'last_name': lastName_list,
'name': fullName_list,
'position': position_list,
'team': team_list
})
# Combine pitcher and batter data
df = pl.concat([df_pitcher, df_batter]).unique().drop_nulls(subset=['player_id']).sort('player_id')
else:
# Fetch player data for other game types
player_data = requests.get(url=f'https://statsapi.mlb.com/api/v1/sports/{sport_id}/players?season={season}&gameType=[{game_type_str}]').json()['people']
# Extract relevant data
fullName_list = [x['fullName'] for x in player_data]
firstName_list = [x['firstName'] for x in player_data]
lastName_list = [x['lastName'] for x in player_data]
id_list = [x['id'] for x in player_data]
position_list = [x['primaryPosition']['abbreviation'] if 'primaryPosition' in x else None for x in player_data]
team_list = [x['currentTeam']['id'] if 'currentTeam' in x else None for x in player_data]
weight_list = [x['weight'] if 'weight' in x else None for x in player_data]
height_list = [x['height'] if 'height' in x else None for x in player_data]
age_list = [x['currentAge'] if 'currentAge' in x else None for x in player_data]
birthDate_list = [x['birthDate'] if 'birthDate' in x else None for x in player_data]
df = pl.DataFrame(data={
'player_id': id_list,
'first_name': firstName_list,
'last_name': lastName_list,
'name': fullName_list,
'position': position_list,
'team': team_list,
'weight': weight_list,
'height': height_list,
'age': age_list,
'birthDate': birthDate_list
})
return df