Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,698 Bytes
9f200a2 7a34add b692859 9f200a2 7a34add 9f200a2 70cdee7 7a34add 70cdee7 b692859 7a34add 9f200a2 b692859 9f200a2 7a34add b692859 9f200a2 7a34add |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import os
import uuid
from omegaconf import OmegaConf
import spaces
import random
import imageio
import torch
import torchvision
import gradio as gr
import numpy as np
from gradio.components import Textbox, Video
from utils.lora import collapse_lora, monkeypatch_remove_lora
from utils.lora_handler import LoraHandler
from utils.common_utils import load_model_checkpoint
from utils.utils import instantiate_from_config
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
from pipeline.t2v_turbo_vc2_pipeline import T2VTurboVC2Pipeline
DESCRIPTION = """# T2V-Turbo π
We provide T2V-Turbo (VC2) distilled from [VideoCrafter2](https://ailab-cvc.github.io/videocrafter2/) with the reward feedback from [HPSv2.1](https://github.com/tgxs002/HPSv2/tree/master) and [InternVid2 Stage 2 Model](https://huggingface.co/OpenGVLab/InternVideo2-Stage2_1B-224p-f4).
You can download the the models from [here](https://huggingface.co/jiachenli-ucsb/T2V-Turbo-VC2). Check out our [Project page](https://t2v-turbo.github.io) π
"""
if torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CUDA π</p>"
elif hasattr(torch, "xpu") and torch.xpu.is_available():
DESCRIPTION += "\n<p>Running on XPU π€</p>"
else:
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def save_video(video_array, video_save_path, fps: int = 16):
video = video_array.detach().cpu()
video = torch.clamp(video.float(), -1.0, 1.0)
video = video.permute(1, 0, 2, 3) # t,c,h,w
video = (video + 1.0) / 2.0
video = (video * 255).to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(
video_save_path, video, fps=fps, video_codec="h264", options={"crf": "10"}
)
example_txt = [
"An astronaut riding a horse.",
"Darth vader surfing in waves.",
"Robot dancing in times square.",
"Clown fish swimming through the coral reef.",
"Pikachu snowboarding.",
"With the style of van gogh, A young couple dances under the moonlight by the lake.",
"A young woman with glasses is jogging in the park wearing a pink headband.",
"Impressionist style, a yellow rubber duck floating on the wave on the sunset",
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
"With the style of low-poly game art, A majestic, white horse gallops gracefully across a moonlit beach.",
]
examples = [[i, 7.5, 4, 16, 16] for i in example_txt]
@spaces.GPU(duration=300)
@torch.inference_mode()
def generate(
prompt: str,
guidance_scale: float = 7.5,
num_inference_steps: int = 4,
num_frames: int = 16,
fps: int = 16,
seed: int = 0,
randomize_seed: bool = False,
):
seed = int(randomize_seed_fn(seed, randomize_seed))
result = pipeline(
prompt=prompt,
frames=num_frames,
fps=fps,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_videos_per_prompt=1,
)
torch.cuda.empty_cache()
tmp_save_path = "tmp.mp4"
root_path = "./videos/"
os.makedirs(root_path, exist_ok=True)
video_save_path = os.path.join(root_path, tmp_save_path)
save_video(result[0], video_save_path, fps=fps)
display_model_info = f"Video size: {num_frames}x320x512, Sampling Step: {num_inference_steps}, Guidance Scale: {guidance_scale}"
return video_save_path, prompt, display_model_info, seed
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
if __name__ == "__main__":
device = torch.device("cuda:0")
config = OmegaConf.load("configs/inference_t2v_512_v2.0.yaml")
model_config = config.pop("model", OmegaConf.create())
pretrained_t2v = instantiate_from_config(model_config)
pretrained_t2v = load_model_checkpoint(pretrained_t2v, "checkpoints/vc2_model.ckpt")
unet_config = model_config["params"]["unet_config"]
unet_config["params"]["time_cond_proj_dim"] = 256
unet = instantiate_from_config(unet_config)
unet.load_state_dict(
pretrained_t2v.model.diffusion_model.state_dict(), strict=False
)
use_unet_lora = True
lora_manager = LoraHandler(
version="cloneofsimo",
use_unet_lora=use_unet_lora,
save_for_webui=True,
unet_replace_modules=["UNetModel"],
)
lora_manager.add_lora_to_model(
use_unet_lora,
unet,
lora_manager.unet_replace_modules,
lora_path="checkpoints/unet_lora.pt",
dropout=0.1,
r=64,
)
unet.eval()
collapse_lora(unet, lora_manager.unet_replace_modules)
monkeypatch_remove_lora(unet)
pretrained_t2v.model.diffusion_model = unet
scheduler = T2VTurboScheduler(
linear_start=model_config["params"]["linear_start"],
linear_end=model_config["params"]["linear_end"],
)
pipeline = T2VTurboVC2Pipeline(pretrained_t2v, scheduler, model_config)
pipeline.to(device)
demo = gr.Interface(
fn=generate,
inputs=[
Textbox(label="", placeholder="Please enter your prompt. \n"),
gr.Slider(
label="Guidance scale",
minimum=2,
maximum=14,
step=0.1,
value=7.5,
),
gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=8,
step=1,
value=4,
),
gr.Slider(
label="Number of Video Frames",
minimum=16,
maximum=48,
step=8,
value=16,
),
gr.Slider(
label="FPS",
minimum=8,
maximum=32,
step=4,
value=16,
),
gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True,
),
gr.Checkbox(label="Randomize seed", value=True),
],
outputs=[
gr.Video(label="Generated Video", width=512, height=320, interactive=False, autoplay=True),
Textbox(label="input prompt"),
Textbox(label="model info"),
gr.Slider(label="seed"),
],
description=DESCRIPTION,
theme=gr.themes.Default(),
css=block_css,
examples=examples,
cache_examples=False,
concurrency_limit=10,
)
demo.launch()
|