yuxiaod commited on
Commit
698bdeb
·
1 Parent(s): 3cf802b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -1
README.md CHANGED
@@ -7,4 +7,36 @@ sdk: static
7
  pinned: false
8
  ---
9
 
10
- Knowledge Engineering Group (KEG) & Data Mining at Tsinghua University
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  pinned: false
8
  ---
9
 
10
+ The Knowledge Engineering Group (**KEG**) & Data Mining (THUDM) at Tsinghua University.
11
+
12
+ We build LLMs:
13
+
14
+ * **[ChatGLM](https://github.com/THUDM/ChatGLM3)**: Open Bilingual Chat LLMs, among which the ChatGLM-6B series has attracted **10,000,000** downloads on HF.
15
+ * **[CodeGeeX](https://github.com/THUDM/CodeGeeX2)**: A Multilingual Code Generation Model (KDD 2023)
16
+ * **[CogVLM (VisualGLM)](https://github.com/THUDM/CogVLM)**: An Open Visual Language Model
17
+ * **[WebGLM](https://github.com/THUDM/WebGLM)**: An Efficient Web-Enhanced Question Answering System (KDD 2023)
18
+ * **[GLM-130B](https://github.com/THUDM/GLM-130B)**: An Open Bilingual Pre-Trained Model (ICLR 2023)
19
+ * **[CogView](https://github.com/THUDM/CogView)**: An Open Text-to-Image Generation Model (NeurIPS 2021)
20
+ * **[CogVideo](https://github.com/THUDM/CogVideo)**: An Open Text-to-Video Generation Model (ICLR 2023)
21
+ * **[AgentTuning](https://github.com/THUDM/AgentTuning)**: Enabling Generalized Agent Abilities for LLMs
22
+
23
+ We also work on LLM evaluations:
24
+ * **[AgentBench](https://github.com/THUDM/AgentBench)**: A Benchmark to Evaluate LLMs as Agents
25
+ * **[LongBench](https://github.com/THUDM/LongBench)**: A Bilingual, Multitask Benchmark for Long Context Understanding
26
+
27
+
28
+ We also pre-train graph neural networks:
29
+ * **[CogDL](https://github.com/THUDM/CogDL)**: A Library for Graph Deep Learning (WWW 2023)
30
+ * **[GraphMAE](https://github.com/THUDM/GraphMAE)**: (Generative) Masked Graph Neural Network Pre-Training. (KDD 2022 & [WWW 2023](https://github.com/THUDM/GraphMAE2))
31
+ * **[GPT-GNN](https://github.com/acbull/GPT-GNN)**: Generative Graph Neural Network Pre-Training (KDD 2020, MSR, UCLA).
32
+ * **[GCC](https://github.com/THUDM/CogDL)**: Constrative Graph Neural Network Pre-Training (KDD 2020)
33
+ * **[SelfKG](https://github.com/THUDM/SelfKG)**: Self-Supervised Learning for Knowledge Graphs (WWW 2022)
34
+
35
+ We also work on graph embedding theory and system:
36
+ * **[SketchNE](https://github.com/THU-numbda/SketchNE)**: Embedding Billion-Scale Networks Accurately in One Hour (TKDE 2023)
37
+ * **[ProNE](https://github.com/THUDM/ProNE)**: Embedding Networks of 100 Million Nodes with 10-400 Speedup (IJCAI 2019)
38
+ * **[NetSMF](https://github.com/xptree/NetSMF)**: Embedding Networks of 100 Million Nodes (WWW 2019)
39
+ * **[NetMF](https://github.com/xptree/NetMF)**: Understanding DeepWalk, LINE, PTE, and node2vec as Matrix Factorization (WSDM 2018)
40
+
41
+ We started with graphs and networks, and always love them:
42
+ * **[AMiner](https://www.aminer.cn/)**: An Academic Search and Mining System Since 2006 (KDD 2008, ACM SIGKDD Test of Time Award)