TDN-M commited on
Commit
1e2c4b9
·
verified ·
1 Parent(s): a08472f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -61
app.py CHANGED
@@ -93,67 +93,9 @@ load_network(model, MODEL_NAME, strict=True, param_key='params')
93
 
94
 
95
 
96
- title = "See More Details"
97
- description = ''' ### See More Details: Efficient Image Super-Resolution by Experts Mining - ICML 2024, Vienna, Austria
98
-
99
- #### [Eduard Zamfir<sup>1</sup>](https://eduardzamfir.github.io), [Zongwei Wu<sup>1*</sup>](https://sites.google.com/view/zwwu/accueil), [Nancy Mehta<sup>1</sup>](https://scholar.google.com/citations?user=WwdYdlUAAAAJ&hl=en&oi=ao), [Yulun Zhang<sup>2,3*</sup>](http://yulunzhang.com/) and [Radu Timofte<sup>1</sup>](https://www.informatik.uni-wuerzburg.de/computervision/)
100
-
101
- #### **<sup>1</sup> University of Würzburg, Germany - <sup>2</sup> Shanghai Jiao Tong University, China - <sup>3</sup> ETH Zürich, Switzerland**
102
- #### **<sup>*</sup> Corresponding authors**
103
-
104
- <details>
105
- <summary> <b> Abstract</b> (click me to read)</summary>
106
- <p>
107
- Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses a significant challenge in image super-resolution (SR). While recent approaches have demonstrated the efficacy of intricate operations customized for various objectives, the straightforward stacking of these disparate operations can result in a substantial computational burden, hampering their practical utility. In response, we introduce **S**eemo**R**e, an efficient SR model employing expert mining. Our approach strategically incorporates experts at different levels, adopting a collaborative methodology. At the macro scale, our experts address rank-wise and spatial-wise informative features, providing a holistic understanding. Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts. By tapping into experts specialized in distinct key factors crucial for accurate SR, our model excels in uncovering intricate intra-feature details. This collaborative approach is reminiscent of the concept of **see more**, allowing our model to achieve an optimal performance with minimal computational costs in efficient settings
108
- </p>
109
- </details>
110
-
111
-
112
- #### Drag the slider on the super-resolution image left and right to see the changes in the image details. SeemoRe performs x4 upscaling on the input image.
113
-
114
- <br>
115
-
116
- <code>
117
- @inproceedings{zamfir2024details,
118
- title={See More Details: Efficient Image Super-Resolution by Experts Mining},
119
- author={Eduard Zamfir and Zongwei Wu and Nancy Mehta and Yulun Zhang and Radu Timofte},
120
- booktitle={International Conference on Machine Learning},
121
- year={2024},
122
- organization={PMLR}
123
- }
124
- </code>
125
- <br>
126
- '''
127
-
128
-
129
- article = "<p style='text-align: center'><a href='https://eduardzamfir.github.io/seemore' target='_blank'>See More Details: Efficient Image Super-Resolution by Experts Mining</a></p>"
130
-
131
- #### Image,Prompts examples
132
- examples = [
133
- ['images/0801x4.png'],
134
- ['images/0840x4.png'],
135
- ['images/0841x4.png'],
136
- ['images/0870x4.png'],
137
- ['images/0878x4.png'],
138
- ['images/0884x4.png'],
139
- ['images/0900x4.png'],
140
- ['images/img002x4.png'],
141
- ['images/img003x4.png'],
142
- ['images/img004x4.png'],
143
- ['images/img035x4.png'],
144
- ['images/img053x4.png'],
145
- ['images/img064x4.png'],
146
- ['images/img083x4.png'],
147
- ['images/img092x4.png'],
148
- ]
149
-
150
- css = """
151
- .image-frame img, .image-container img {
152
- width: auto;
153
- height: auto;
154
- max-width: none;
155
- }
156
- """
157
 
158
  demo = gr.Interface(
159
  fn=process_img,
 
93
 
94
 
95
 
96
+ title = "Enhane Quality"
97
+
98
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
  demo = gr.Interface(
101
  fn=process_img,