# Changed from https://huggingface.co/spaces/playgroundai/playground-v2.5/blob/main/app.py import argparse import os import random import time from datetime import datetime import GPUtil # import gradio last to avoid conflicts with other imports import gradio as gr import safety_check import spaces import torch from diffusers import SanaPipeline from nunchaku.models.transformer_sana import NunchakuSanaTransformer2DModel from transformers import AutoModelForCausalLM, AutoTokenizer MAX_IMAGE_SIZE = 2048 MAX_SEED = 1000000000 DEFAULT_HEIGHT = 1024 DEFAULT_WIDTH = 1024 # num_inference_steps, guidance_scale, seed EXAMPLES = [ [ "🐶 Wearing 🕶 flying on the 🌈", 1024, 1024, 20, 5, 2, ], [ "大漠孤烟直, 长河落日圆", 1024, 1024, 20, 5, 23, ], [ "Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, " "volumetric lighting, spectacular, ambient lights, light pollution, cinematic atmosphere, " "art nouveau style, illustration art artwork by SenseiJaye, intricate detail.", 1024, 1024, 20, 5, 233, ], [ "A photo of a Eurasian lynx in a sunlit forest, with tufted ears and a spotted coat. The lynx should be " "sharply focused, gazing into the distance, while the background is softly blurred for depth. Use cinematic " "lighting with soft rays filtering through the trees, and capture the scene with a shallow depth of field " "for a natural, peaceful atmosphere. 8K resolution, highly detailed, photorealistic, " "cinematic lighting, ultra-HD.", 1024, 1024, 20, 5, 2333, ], [ "A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. " "She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. " "She wears sunglasses and red lipstick. She walks confidently and casually. " "The street is damp and reflective, creating a mirror effect of the colorful lights. " "Many pedestrians walk about.", 1024, 1024, 20, 5, 23333, ], [ "Cozy bedroom with vintage wooden furniture and a large circular window covered in lush green vines, " "opening to a misty forest. Soft, ambient lighting highlights the bed with crumpled blankets, a bookshelf, " "and a desk. The atmosphere is serene and natural. 8K resolution, highly detailed, photorealistic, " "cinematic lighting, ultra-HD.", 1024, 1024, 20, 5, 233333, ], ] def hash_str_to_int(s: str) -> int: """Hash a string to an integer.""" modulus = 10**9 + 7 # Large prime modulus hash_int = 0 for char in s: hash_int = (hash_int * 31 + ord(char)) % modulus return hash_int def get_pipeline( precision: str, use_qencoder: bool = False, device: str | torch.device = "cuda", pipeline_init_kwargs: dict = {} ) -> SanaPipeline: if precision == "int4": assert torch.device(device).type == "cuda", "int4 only supported on CUDA devices" transformer = NunchakuSanaTransformer2DModel.from_pretrained("mit-han-lab/svdq-int4-sana-1600m") pipeline_init_kwargs["transformer"] = transformer if use_qencoder: raise NotImplementedError("Quantized encoder not supported for Sana for now") else: assert precision == "bf16" pipeline = SanaPipeline.from_pretrained( "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", variant="bf16", torch_dtype=torch.bfloat16, **pipeline_init_kwargs, ) pipeline = pipeline.to(device) return pipeline def get_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument( "-p", "--precisions", type=str, default=["int4"], nargs="*", choices=["int4", "bf16"], help="Which precisions to use", ) parser.add_argument("--use-qencoder", action="store_true", help="Whether to use 4-bit text encoder") parser.add_argument("--no-safety-checker", action="store_true", help="Disable safety checker") parser.add_argument("--count-use", action="store_true", help="Whether to count the number of uses") return parser.parse_args() args = get_args() pipelines = [] pipeline_init_kwargs = {} for i, precision in enumerate(args.precisions): pipeline = get_pipeline( precision=precision, use_qencoder=args.use_qencoder, device="cuda", pipeline_init_kwargs={**pipeline_init_kwargs}, ) pipelines.append(pipeline) if i == 0: pipeline_init_kwargs["vae"] = pipeline.vae pipeline_init_kwargs["text_encoder"] = pipeline.text_encoder # safety checker safety_checker_tokenizer = AutoTokenizer.from_pretrained(args.shield_model_path) safety_checker_model = AutoModelForCausalLM.from_pretrained( args.shield_model_path, device_map="auto", torch_dtype=torch.bfloat16, ).to(pipeline.device) @spaces.GPU(enable_queue=True) def generate( prompt: str = None, height: int = 1024, width: int = 1024, num_inference_steps: int = 4, guidance_scale: float = 0, seed: int = 0, ): print(f"Prompt: {prompt}") is_unsafe_prompt = False if safety_check.is_dangerous(safety_checker_tokenizer, safety_checker_model, prompt, threshold=0.2): prompt = "A peaceful world." images, latency_strs = [], [] for i, pipeline in enumerate(pipelines): progress = gr.Progress(track_tqdm=True) start_time = time.time() image = pipeline( prompt=prompt, height=height, width=width, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=torch.Generator().manual_seed(seed), ).images[0] end_time = time.time() latency = end_time - start_time if latency < 1: latency = latency * 1000 latency_str = f"{latency:.2f}ms" else: latency_str = f"{latency:.2f}s" images.append(image) latency_strs.append(latency_str) if is_unsafe_prompt: for i in range(len(latency_strs)): latency_strs[i] += " (Unsafe prompt detected)" torch.cuda.empty_cache() if args.count_use: if os.path.exists("use_count.txt"): with open("use_count.txt") as f: count = int(f.read()) else: count = 0 count += 1 current_time = datetime.now() print(f"{current_time}: {count}") with open("use_count.txt", "w") as f: f.write(str(count)) with open("use_record.txt", "a") as f: f.write(f"{current_time}: {count}\n") return *images, *latency_strs with open("./assets/description.html") as f: DESCRIPTION = f.read() gpus = GPUtil.getGPUs() if len(gpus) > 0: gpu = gpus[0] memory = gpu.memoryTotal / 1024 device_info = f"Running on {gpu.name} with {memory:.0f} GiB memory." else: device_info = "Running on CPU 🥶 This demo does not work on CPU." notice = f'Notice: We will replace unsafe prompts with a default prompt: "A peaceful world."' with gr.Blocks( css_paths=[f"assets/frame{len(args.precisions)}.css", "assets/common.css"], title=f"SVDQuant SANA-1600M Demo", ) as demo: def get_header_str(): if args.count_use: if os.path.exists("use_count.txt"): with open("use_count.txt") as f: count = int(f.read()) else: count = 0 count_info = ( f"
" f"Total inference runs: " f" {count}
" ) else: count_info = "" header_str = DESCRIPTION.format(device_info=device_info, notice=notice, count_info=count_info) return header_str header = gr.HTML(get_header_str()) demo.load(fn=get_header_str, outputs=header) with gr.Row(): image_results, latency_results = [], [] for i, precision in enumerate(args.precisions): with gr.Column(): gr.Markdown(f"# {precision.upper()}", elem_id="image_header") with gr.Group(): image_result = gr.Image( format="png", image_mode="RGB", label="Result", show_label=False, show_download_button=True, interactive=False, ) latency_result = gr.Text(label="Inference Latency", show_label=True) image_results.append(image_result) latency_results.append(latency_result) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, scale=4 ) run_button = gr.Button("Run", scale=1) with gr.Row(): seed = gr.Slider(label="Seed", show_label=True, minimum=0, maximum=MAX_SEED, value=233, step=1, scale=4) randomize_seed = gr.Button("Random Seed", scale=1, min_width=50, elem_id="random_seed") with gr.Accordion("Advanced options", open=False): with gr.Group(): height = gr.Slider(label="Height", minimum=256, maximum=4096, step=32, value=1024) width = gr.Slider(label="Width", minimum=256, maximum=4096, step=32, value=1024) with gr.Group(): num_inference_steps = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, step=1, value=20) guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=10, step=0.1, value=5) input_args = [prompt, height, width, num_inference_steps, guidance_scale, seed] gr.Examples(examples=EXAMPLES, inputs=input_args, outputs=[*image_results, *latency_results], fn=generate) gr.on( triggers=[prompt.submit, run_button.click], fn=generate, inputs=input_args, outputs=[*image_results, *latency_results], api_name="run", ) randomize_seed.click( lambda: random.randint(0, MAX_SEED), inputs=[], outputs=seed, api_name=False, queue=False ).then(fn=generate, inputs=input_args, outputs=[*image_results, *latency_results], api_name=False, queue=False) gr.Markdown("MIT Accessibility: https://accessibility.mit.edu/", elem_id="accessibility") if __name__ == "__main__": demo.queue(max_size=20).launch(server_name="0.0.0.0", debug=True, share=True)